Chi-Square and F Distributions:
Tests for Variances
Edpsy 580

Carolyn J. Anderson
Department of Educational Psychology
University of Illinois at Urbana-Champaign
Outline

- Introduction, motivation and overview
- Chi-square distribution
 - Definition & properties
 - Inference for one variance
- \mathcal{F} distribution
 - Definition & properties
 - Inference for two variances
- Relationships between distributions: “The BIG Five”.
Introduction

Chi-Square & \mathcal{F} Distribution and Inferences about Variances

- **The Chi-square Distribution**
 - Definition, properties, tables of, density calculator
 - Testing hypotheses about the variance of a single population
 (i.e., $H_0 : \sigma^2 = K$).
 - Example.

- **The \mathcal{F} Distribution**
 - Definition, important properties, tables of
 - Testing the equality of variances of two independent populations
 (i.e., $H_0 : \sigma_1^2 = \sigma_2^2$).
 - Example.
... and Inferences about Variances

- Comments regarding testing the homogeneity of variance assumption of the two independent groups t–test (and ANOVA).

- Relationship among the Normal, t, χ^2, and \mathcal{F} distributions.
Motivation

- The normal and t distributions are useful for tests of population means, but often we may want to make inferences about population variances.

Examples:

- Does the variance equal a particular value?
- Does the variance in one population equal the variance in another population?
- Are individual differences greater in one population than another population?
- Are the variances in J populations all the same?
- Is the assumption of homogeneous variances reasonable when doing a t–test (or ANOVA) of two (or more) means?
Uses for Chi-Square & F

- To make statistical inferences about populations variance(s), we need
 - $\chi^2 \rightarrow$ The Chi-square distribution (Greek “chi”).
 - $F \rightarrow$ Named after Sir Ronald Fisher who developed the main applications of F.

- The χ^2 and F–distributions are used for many problems in addition to the ones listed above.

- They provide good approximations to a large class of sampling distributions that are not easily determined.
Overview

- The Big Five Theoretical Distributions are the Normal, Student’s t, χ^2, F, and the Binomial (π, n).

- Plan:
 - Introduce χ^2 and then the F distributions.
 - Illustrate their uses for testing variances.
 - Summarize and describe the relationship among the Normal, Student’s t, χ^2 and F.
Suppose we have a population with scores Y that are normally distributed with mean $E(Y) = \mu$ and variance $\text{var}(Y) = \sigma^2$ (i.e., $Y \sim \mathcal{N}(\mu, \sigma^2)$).

If we repeatedly take samples of size $n = 1$ and for each “sample” compute

$$z^2 = \left(\frac{Y - \mu}{\sigma^2}\right)^2 = \text{squared standard score}$$

Define $\chi_1^2 = z^2$

What would the sampling distribution of χ_1^2 look like?
The Chi-Square Distribution, \(\nu = 1 \)

Chi-Squared Distribution, \(\nu = 1 \)

- **Standard Normal**
- **Chi-Squared with \(\nu = 1 \)**
The Chi-Square Distribution, $\nu = 1$

- χ_1^2 are non-negative Real numbers
- Since 68% of values from $\mathcal{N}(0, 1)$ fall between -1 to 1, 68% of values from χ_1^2 distribution must be between 0 and 1.
- The chi-square distribution with $\nu = 1$ is very skewed.
Repeatedly draw independent (random) samples of $n = 2$ from $N(\mu, \sigma^2)$.

Compute $Z_1^2 = (Y_1 - \mu)^2/\sigma^2$ and $Z_2^2 = (Y_2 - \mu)^2/\sigma^2$.

Compute the sum: $\chi_2^2 = Z_1^2 + Z_2^2$.
The Chi-Square Distribution, \(\nu = 2 \)

- All value non-negative
- A little less skewed than \(\chi_1^2 \).
- The probability that \(\chi_2^2 \) falls in the range of 0 to 1 is smaller relative to that for \(\chi_1^2 \)...

\[
P(\chi_1^2 \leq 1) = .68
\]
\[
P(\chi_2^2 \leq 1) = .39
\]

- Note that mean \(\approx \nu = 2 \).
Chi-Square Distributions

- **Generalize**: For n independent observations from a $\mathcal{N}(\mu, \sigma^2)$, the sum of squared values has a Chi-square distribution with n degrees of freedom.

- Chi–squared distribution only depends on degrees of freedom, which in turn depends on sample size n.

- The standard scores are computed using population μ and σ^2; however, we usually don’t know what μ and σ^2 equal. When μ and σ^2 are estimated from the sampled data, the degrees of freedom are less than n.
Chi-Square Dist: Varying ν

Chi-Square Distributions

- Chi-Square Distributions
- The Chi-Square Distribution, $\nu = 1$
- The Chi-Square Distribution, $\nu = 1$
- The Chi-Square Distribution, $\nu = 2$
- The Chi-Square Distribution, $\nu = 2$
- Chi-Square Distributions
- Chi-Square Dist: Varying ν
- Properties of Family of χ^2 Distributions
- Properties of Family of χ^2 Distributions
- Properties of Family of χ^2 Distributions
- Percentiles of χ^2 Distributions
- SAS Examples & Computations
- SAS Examples & Computations
- Inferences about a Population Variance
- Inferences about σ^2
- Test Statistic for $\null H_0 : \sigma^2 = \nu_0$
- Decision and Conclusion, $\null H_0 : \sigma^2 = \nu_0$
- Example of $\null H_0 : \sigma^2 = \nu_0$

Chi-Square and F Distributions Slide 14 of 54

Value of X^2

Density

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

8.25

8.50

8.75

9.00

9.25

9.50

9.75

10.00

10.25

10.50

10.75

11.00

11.25

11.50

11.75

12.00

12.25

12.50

12.75

13.00

13.25

13.50

13.75

14.00

14.25

14.50

14.75

15.00

15.25

15.50

15.75

16.00

16.25

16.50

16.75

17.00

17.25

17.50

17.75

18.00

18.25

18.50

18.75

19.00
Properties of Family of χ^2 Distributions

- They are all positively skewed.
- As ν gets larger, the degree of skew decreases.
- As ν gets very large, χ^2_ν approaches the normal distribution.

Why?
Properties of Family of χ^2 Distributions

- $E(\chi^2_\nu) = \text{mean} = \nu = \text{degrees of freedom}$.

- $E[(\chi^2_\nu - E(\chi^2_\nu))^2] = \text{var}(\chi^2_\nu) = 2\nu$.

- Mode of χ^2_ν is at value $\nu - 2$ (for $\nu \geq 2$).

- Median is approximately $= (3\nu - 2)/3$ (for $\nu \geq 2$).
Properties of Family of χ^2 Distributions

IF

- A random variable $\chi^2_{\nu_1}$ has a chi-squared distribution with ν_1 degrees of freedom, and
- A second independent random variable $\chi^2_{\nu_2}$ has a chi-squared distribution with ν_2 degrees of freedom,

THEN

$$\chi^2(\nu_1 + \nu_2) = \chi^2_{\nu_1} + \chi^2_{\nu_2}$$

their sum has a chi-squared distribution with $(\nu_1 + \nu_2)$ degrees of freedom.
Percentiles of χ^2 Distributions

Note: $.95\chi_1^2 = 3.84 = 1.96^2 = z_{.95}^2$

- Tables
- http://calculator.stat.ucla.edu/cdf/
- pvalue.f program or the executable version, pvalue.exe, on the course web-site.

SAS: PROBCHI($x, df<, nc>$)

where

- $x =$ number
- $df =$ degrees of freedom
- If $p = \text{PROBCHI}(x, df)$, then $p = \text{Prob}(\chi_{df}^2 \leq x)$
Input to program editor to get p-values:

```sas
DATA probval;
pz=PROBNORM(1.96);
pzsq=PROBCHI(3.84,1);
output;
RUN;

PROC PRINT data=probval;
RUN;
```

Output:

```
pz    pzsq
0.97500 0.95000
```

What are these values?
Introduction

Chi-Square Distributions

- Chi-Square Distributions
- The Chi-Square Distribution, $\nu = 1$
- The Chi-Square Distribution, $\nu = 2$
- Chi-Square Dist: Varying ν
- Properties of Family of χ^2 Distributions
- Properties of Family of χ^2 Distributions
- Properties of Family of χ^2 Distributions
- Percentiles of χ^2 Distributions
- SAS Examples & Computations
- SAS Examples & Computations
- Inferences about a Population Variance
- Inferences about σ^2
- Test Statistic for $H_0 : \sigma^2 = \sigma_o^2$
- Decision and Conclusion:
 - $H_0 : \sigma^2 = \sigma_o^2$
 - Example of $H_0 : \sigma^2 = \sigma_o^2$

SAS Examples & Computations

...To get density values...

Probability Density;

```sas
data chisq3;
  do x=0 to 10 by .005;
    pdfxsq=pdf('CHISQUARE',x,3);
    output;
  end;
run;
```
Inferences about a Population Variance

or the sampling distribution of the sample variance from a normal population.

- **Statistical Hypotheses:**
 \[H_0 : \sigma^2 = \sigma_o^2 \quad \text{versus} \quad H_a : \sigma^2 \neq \sigma_o^2 \]

- **Assumptions:** Observations are independently drawn (random) from a normal population; i.e.,
 \[Y_i \sim \mathcal{N}(\mu, \sigma^2) \quad \text{i.i.d} \]
Inferences about σ^2

Test Statistic:

- We know
 \[\sum_{i=1}^{n} \frac{(Y_i - \mu)^2}{\sigma^2} = \sum_{i=1}^{n} z_i^2 \sim \chi_n^2 \]
 if $z \sim \mathcal{N}(0, 1)$.

- We don’t know μ, so we use \bar{Y} as an estimate of μ
 \[\sum_{i=1}^{n} \frac{(Y_i - \bar{Y})^2}{\sigma^2} \sim \chi_{n-1}^2 \]
 or
 \[\frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{\sigma^2} = \frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2 \]

So
\[s^2 \sim \frac{\sigma^2}{(n-1)} \chi_{n-1}^2 \]
Test Statistic for $H_0 : \sigma^2 = \sigma_0^2$

- Putting this all together, this gives us our test statistic:

$$\chi^2_\nu = \frac{\sum_{i=1}^{n}(Y_i - \bar{Y})^2}{\sigma_0^2}$$

where $H_0 : \sigma^2 = \sigma_0^2$.

- Sampling distribution of Test Statistic: If H_0 is true, which means that $\sigma^2 = \sigma_0^2$, then

$$\chi^2_\nu = \frac{(n - 1)s^2}{\sigma_0^2} = \frac{\sum_{i=1}^{n}(Y_i - \bar{Y})^2}{\sigma_0^2} \sim \chi^2_{n-1}$$
Decision and Conclusion, $H_o : \sigma^2 = \sigma_o^2$

- **Decision:** Compare the obtained test statistic to the chi-squared distribution with $\nu = n - 1$ degrees of freedom. or find the p-value of the test statistic and compare to α.

- **Interpretation/Conclusion:** What does the decision mean in terms of what you’re investigating?
Example of $H_o : \sigma^2 = \sigma_o^2$

- **High School and Beyond:** Is the variance of math scores of students from private schools equal to 100?

- **Statistical Hypotheses:**

 $H_o : \sigma^2 = 100 \quad \text{versus} \quad H_a : \sigma^2 \neq 100$

- **Assumptions:** Math scores are independent and normally distributed in the population of high school seniors who attend private schools and the observations are independent.
Example of $H_0 : \sigma^2 = \sigma_o^2$

- **Test Statistic:** $n = 94$, $s^2 = 67.16$, and set $\alpha = .10$.

$$\chi^2 = \frac{(n - 1)s^2}{\sigma^2} = \frac{(94 - 1)(67.16)}{100} = 62.46$$

with $\nu = (94 - 1) = 93$.

- **Sampling Distribution of the Test Statistic:**

 Chi-square with $\nu = 93$.

 Critical values: $.05 \chi^2_{93} = 71.76$ & $.95 \chi^2_{93} = 116.51$.
Example of $H_o : \sigma^2 = \sigma_o^2$

- Critical values: $0.05 \chi^2_{93} = 71.76$ & $0.95 \chi^2_{93} = 116.51$.

- Decision: Since the obtained test statistic $\chi^2 = 62.46$ is less than $0.05 \chi^2_{93} = 71.76$, reject H_o at $\alpha = 0.10$.

Chi-Square Distribution with df = 93
Confidence Interval Estimate of σ^2

- Start with

\[
\text{Prob} \left(\frac{(\alpha/2) \chi^2_{\nu}}{\sigma^2} \leq \frac{(n - 1)s^2}{\sigma^2} \leq (1 - \alpha/2) \chi^2_{\nu} \right) = 1 - \alpha
\]

- After a little algebra…

\[
\text{Prob} \left[\left(\frac{1}{(1 - \alpha/2) \chi^2_{\nu}} \right) \leq \frac{\sigma^2}{(n - 1)s^2} \leq \left(\frac{1}{(\alpha/2) \chi^2_{\nu}} \right) \right] = 1 - \alpha
\]

- and a little more

\[
\text{Prob} \left[\left(\frac{(n - 1)s^2}{(1 - \alpha/2) \chi^2_{\nu}} \right) \leq \sigma^2 \leq \left(\frac{(n - 1)s^2}{(\alpha/2) \chi^2_{\nu}} \right) \right] = 1 - \alpha
\]
90% Confidence Interval Estimate of σ^2

- $(1 - \alpha)\%$ Confidence interval,

$$\frac{(n - 1)s^2}{(1 - \alpha/2)\chi^2_{\nu}} \leq \sigma^2 \leq \frac{(n - 1)s^2}{\alpha/2\chi^2_{\nu}}$$

- So,

$$\frac{(94 - 1)(67.16)}{116.51}, \quad \frac{(94 - 1)(67.16)}{71.76} \rightarrow (53.61, 87.04),$$

which does not include 100 (the null hypothesized value).

- $s^2 = 67.16$ isn’t in the center of the interval.
The F Distribution

- Comparing two variances: Are they equal?

- Start with two independent populations, each normal and equal variances...

$$Y_1 \sim \mathcal{N}(\mu_1, \sigma^2) \hspace{1cm} \text{i.i.d.}$$

$$Y_2 \sim \mathcal{N}(\mu_2, \sigma^2) \hspace{1cm} \text{i.i.d.}$$

- Draw two independent random samples from each population,

$$n_1 \quad \text{from population} \quad 1$$

$$n_2 \quad \text{from population} \quad 2$$

- Using data from each of the two samples, estimate σ^2.

$$s_1^2 \quad \text{and} \quad s_2^2$$
The \mathcal{F} Distribution

- Both S_1^2 and S_2^2 are random variables, and their ratio is a random variable,

$$F = \frac{\text{estimate of } \sigma^2}{\text{estimate of } \sigma^2} = \frac{s_1^2}{s_2^2}$$

- Random variable F has an \mathcal{F} distribution.
TESTING FOR EQUAL VARIANCES

- \(\mathcal{F} \) gives us a way to test \(H_0 : \sigma_1^2 = \sigma_2^2 (= \sigma^2) \).

- Test statistic:

\[
F = \left(\frac{s_1^2}{s_2^2} \right) = \frac{\frac{1}{n_1-1} \sum_{i=1}^{n_1} (Y_{i1} - \bar{Y}_1)^2 \left(\frac{1}{\sigma^2} \right)}{\frac{1}{n_2-1} \sum_{i=1}^{n_2} (Y_{i2} - \bar{Y}_2)^2 \left(\frac{1}{\sigma^2} \right)} = \frac{\chi^2_{\nu_1}}{\nu_1} / \frac{\chi^2_{\nu_2}}{\nu_2}
\]

- A random variable formed from the ratio of two independent chi-squared variables, each divided by its degrees of freedom, is an “\(F \)–ratio” and has an \(\mathcal{F} \) distribution.
Conditions for an \mathcal{F} Distribution

IF

- Both parent populations are normal.
- Both parent populations have the same variance.
- The samples (and populations) are independent.

THEN the theoretical distribution of F is $\mathcal{F}_{\nu_1, \nu_2}$ where

- $\nu_1 = n_1 - 1 = \text{numerator degrees of freedom}$
- $\nu_2 = n_2 - 1 = \text{denominator degrees of freedom}$
Eg of F Distributions: F_{2,ν_2}
Eg of \mathcal{F} Distributions: \mathcal{F}_{5,ν_2}
Eg of F Distributions: F_{50, ν_2}...
Important Properties of \mathcal{F} Distributions

- The range of F–values is non-negative real numbers (i.e., 0 to $+\infty$).

- They depend on 2 parameters: numerator degrees of freedom (ν_1) and denominator degrees of freedom (ν_2).

- The expected value (i.e, the mean) of a random variable with an \mathcal{F} distribution with $\nu_2 > 2$ is
 \[E(F_{\nu_1, \nu_2}) = \mu_{F_{\nu_1, \nu_2}} = \frac{\nu_2}{\nu_2 - 2}. \]

- For any fixed ν_1 and ν_2, the \mathcal{F} distribution is non-symmetric.

- The particular shape of the \mathcal{F} distribution varies considerably with changes in ν_1 and ν_2.

- In most applications of the \mathcal{F} distribution (at least in this class), $\nu_1 < \nu_2$, which means that \mathcal{F} is positively skewed.

- When $\nu_2 > 2$, the \mathcal{F} distribution is uni-modal.
Percentiles of the \mathcal{F} Dist.

- http://calculators.stat.ucla.edu/cdf
- p-value program
- SAS prof

- Tables textbooks given the upper 25^{th}, 10^{th}, 5^{th}, 2.5^{th}, and 1^{st} percentiles. Usually, the
 - Columns correspond to ν_1, numerator df.
 - Rows correspond to ν_2, denominator df.

- Getting lower percentiles using tables requires taking reciprocals.
Selected F values from Table V

Note: all values are for upper $\alpha = .05$

<table>
<thead>
<tr>
<th>ν_1</th>
<th>ν_2</th>
<th>F_{ν_1,ν_2}</th>
<th>which is also ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>161.00</td>
<td>t_1^2</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>4.35</td>
<td>t_{20}^2</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
<td>3.85</td>
<td>t_{1000}^2</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
<td>3.84</td>
<td>$t_{\infty}^2 = z^2 = \chi_1^2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ν_1</th>
<th>ν_2</th>
<th>F_{ν_1,ν_2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>4.35</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>2.87</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>2.35</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>2.12</td>
</tr>
<tr>
<td>1000</td>
<td>20</td>
<td>1.57</td>
</tr>
</tbody>
</table>
Test Equality of Two Variances

Are students from private high schools more homogeneous with respect to their math test scores than students from public high schools?

- **Statistical Hypotheses:**

\[H_0 : \sigma_{private}^2 = \sigma_{public}^2 \text{ or } \frac{\sigma_{public}^2}{\sigma_{private}^2} = 1 \]

versus \(H_a : \sigma_{private}^2 < \sigma_{public}^2 \) (1-tailed test).

- **Assumptions:** Math scores of students from private schools and public schools are normally distributed and are independent both between and within in school type.

- **Test Statistic:**

\[F = \frac{s_1^2}{s_2^2} = \frac{91.74}{67.16} = 1.366 \]

with \(\nu_1 = (n_1 - 1) = (506 - 1) = 505 \) and \(\nu_2 = (n_2 - 1) = (94 - 1) = 93. \)
Test Equality of Two Variances

- Since the sample variance for public schools, $s_1^2 = 91.74$, is larger than the sample variance for private schools, $s_2^2 = 67.16$, put s_1^2 in the numerator.

- **Sampling Distribution of Test Statistic is**
 F distribution with $\nu_1 = 505$ and $\nu_2 = 93$.

- **Decision:** Our observed test statistic, $F_{505,93} = 1.366$ has a p–value $= .032$. Since p–value $< \alpha = .05$, reject H_o.

 Or, we could compare the observed test statistic, $F_{505,93} = 1.366$, with the critical value of $F_{505,93}(\alpha = .05) = 1.320$. Since the observed value of the test statistic is larger than the critical value, reject H_o.

- **Conclusion:** The data support the conclusion that students from private schools are more homogeneous with respect to math test scores than students from public schools.
Example Continued

- **Alternative question:** “Are the individual differences of students in public high schools and private high schools the same with respect to their math test scores?”

- **Statistical Hypotheses:** The null is the same, but the alternative hypothesis would be

\[H_a : \sigma^2_{public} \neq \sigma^2_{private} \]
(a 2–tailed alternative)

- **Given** \(\alpha = .05 \), **Retain** the \(H_o \), because our obtained \(p \)–value (the probability of getting a test statistic as large or larger than what we got) is larger than \(\alpha/2 = .025 \).
Example Continued

- Given $\alpha = .05$, Retain the H_o, because our obtained p–value (the probability of getting a test statistic as large or larger than what we got) is larger than $\alpha/2 = .025$.

- Or the rejection region (critical value) would be any F–statistic greater than $F_{50,93}(\alpha = .025) = 1.393$.

- **Point:** This is a case where the choice between a 1 and 2 tailed test leads to different decisions regarding the null hypothesis.
Test for Homogeneity of Variances

\[H_0 : \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_J^2 \]

- These include
 - Hartley’s \(F_{\text{max}} \) test
 - Bartlett’s test
 - One regarding variances of paired comparisons.

- You should know that they exist; we won’t go over them in this class. Such tests are not as important as they once (thought) they were.
Test for Homogeneity of Variances

- **Old View:** Testing the equality of variances should be a preliminary to doing independent t-tests (or ANOVA).

- **Newer View:**
 - Homogeneity of variance is required for small samples, which is when tests of homogeneous variances do not work well. With large samples, we don’t have to assume $\sigma_1^2 = \sigma_2^2$.
 - Test critically depends on population normality.
 - If $n_1 = n_2$, t-tests are robust.
Test for Homogeneity of Variances

- For small or moderate samples and there's concern with possible heterogeneity \rightarrow perform a Quasi-t test.

- In an experimental settings where you have control over the number of subjects and their assignment to groups/conditions/etc. \rightarrow equal sample sizes.

- In non-experimental settings where you have similar numbers of participants per group, t test is pretty robust.
Relationship Between Distributions

Relationship between z, t_ν, χ^2_ν, and F_{ν_1,ν_2}... and the central importance of the normal distribution.

- Normal, Student’s t_ν, χ^2_ν, and F_{ν_1,ν_2} are all theoretical distributions.

- We don’t ever actually take vast (infinite) numbers of samples from populations.

- The distributions are derived based on mathematical logic statements of the form

 IF Then
Indroduction

Chi-Square Distributions

The F Distribution

Relationship Between Distributions

- Relationship Between Distributions
- Derivation of Distributions
- Chi-Square Distribution
- The F Distribution
- Students t Distribution
- Summary of Relationships

Derivation of Distributions

- Assumptions are part of the “if” part, the conditions used to deduce sampling distribution of statistics.

- The t, χ^2 and F distributions all depend on normal “parent” population.
Chi-Square Distribution

- $\chi^2_\nu = \text{sum of } n(= \nu) \text{ independent squared normal random variables with mean } \mu = 0 \text{ and variance } \sigma^2 = 1 \text{ (i.e., “standard normal” random variables).}$

\[
\chi^2_\nu = \sum_{i=1}^{n} z_i^2 \quad \text{where} \quad z_i \sim \mathcal{N}(0, 1) \quad \text{i.i.d.}
\]

- Based on the Central Limit Theorem, the “limit” of the χ^2_ν distribution (i.e., $\nu = n \to \infty$) is normal.
The \mathcal{F} Distribution

- $\mathcal{F}_{\nu_1, \nu_2} = \text{ratio of two independent chi-squared random variables each divided by their respective degrees of freedom.}$

$$\mathcal{F}_{\nu_1, \nu_2} = \frac{\chi^2_{\nu_1}}{\nu_1} \frac{\nu_2}{\chi^2_{\nu_2}}$$

- Since χ^2_{ν}'s depend on the normal distribution, the \mathcal{F} distribution also depends on the normal distribution.

- The “limiting” distribution of $\mathcal{F}_{\nu_1, \nu_2}$ as $\nu_2 \to \infty$ is $\chi^2_{\nu_1}/\nu_1 \ldots \ldots \text{because as } \nu_2 \to \infty, \chi^2_{\nu_2}/\nu_2 \to 1.$
Students \(t \) Distribution

Let \(\nu = n - 1 \), and note that

\[
\begin{align*}
t^2_{\nu} &= \left(\frac{\bar{Y} - \mu}{s/\sqrt{n}} \right)^2 \\
&= \frac{(\bar{Y} - \mu)^2 n}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2/(n - 1)} \\
&= \frac{(\bar{Y} - \mu)^2 n}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2/(n - 1)} \left(\frac{1}{\sigma^2} \right) \\
&= \frac{(\bar{Y} - \mu)^2}{\sigma^2/n} \frac{n}{\sigma^2/(n-1)} = \frac{z^2}{\chi^2/\nu}
\end{align*}
\]
Student's t based on normal,

$$
t^2_{\nu} = \frac{z^2}{\chi^2_{\nu}/\nu}
$$

or

$$
t = \frac{z}{\sqrt{\chi^2_{\nu}/\nu}}
$$

A squared t random variable equals the ratio of squared standard normal divided by chi-squared divided by its degrees of freedom. So...
Since

\[t^2_\nu = \frac{z^2}{\chi^2_\nu / \nu} \quad \text{or} \quad t = \frac{z}{\sqrt{\chi^2_\nu / \nu}} \]

- As \(\nu \to \infty \), \(t_\nu \to \mathcal{N}(0, 1) \) because \(\chi^2_\nu / \nu \to 1 \).

- Since \(z^2 = \chi^2_1 \),

\[t^2 = \frac{z^2/1}{\chi^2_n / \nu} = \frac{\chi^2_1/1}{\chi^2_n / \nu} = \mathcal{F}_{1, \nu} \]

- Why are the assumptions of normality, homogeneity of variance, and independence required for
 - \(t \) test for mean(s)
 - Testing homogeneity of variance(s).
Summary of Relationships

Let $z \sim \mathcal{N}(0, 1)$

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Definition</th>
<th>Parent</th>
<th>Limiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2_ν</td>
<td>$\sum_{i=1}^{\nu} z_i^2$ independent z’s</td>
<td>normal</td>
<td>As $\nu \to \infty$, $\chi^2_\nu \to$ normal</td>
</tr>
<tr>
<td>$\mathcal{F}_{\nu_1, \nu_2}$</td>
<td>$(\chi^2_{\nu_1}/\nu_1)/(\chi^2_{\nu_2}/\nu_2)$ independent χ^2’s</td>
<td>chi-squared</td>
<td>As $\nu_2 \to \infty$, $\mathcal{F}{\nu_1, \nu_2} \to \chi^2{\nu_1}/\nu_1$</td>
</tr>
<tr>
<td>t</td>
<td>$z/\sqrt{\chi^2/\nu}$</td>
<td>normal</td>
<td>As $\nu \to \infty$, $t \to$ normal</td>
</tr>
</tbody>
</table>