Log-linear Models for Contingency Tables
Edpsy/Psych/Soc 589

Carolyn J. Anderson
Department of Educational Psychology

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Outline

In this set of notes:

- Loglinear models for 2–way tables.
- Loglinear models for 3–way tables.
- Statistical inference & model checking.
- Statistical versus Practical Significance.
- The logit–log-linear model connection. (We’ll discuss further connections when we cover multicategory logit models).
- Model building (graphical models).
- Modelling ordinal associations, including linear \times linear associations.
- Modelling approach to testing conditional independence.
- Sparse data, including
 - Structural zeros
 - Sampling zeros
 - Effect on G^2 and X^2.
Log-linear models (or Poisson regression)

\[\log(\mu) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k \]

where

\[\mu = \text{response variable} = \text{count (or rate)} \]

- The most common use of log-linear models is for modeling counts in contingency tables; that is, the explanatory variables are all categorical.

- Log-linear models are used to model the association (or interaction structure) between/among categorical variables.

- The categorical variables (which in GLM terminology are explanatory variables) are the “responses” in the sense that we’re interested in describing the relationship between the variables.

- This use of “response” differs from our use in GLM. For log-linear models, the response variable are the cell frequencies (counts) in the contingency table.
Log-linear Models for 2-way Tables

Review of notations for 2-way Contingency tables:

- $I =$ the number of rows.
- $J =$ the number of columns.
- $I \times J =$ contingency table.
- $N = IJ =$ the number of cells in the table.
- $n =$ the number of subjects (respondents, objects, etc.) cross-classified by 2 discrete (categorical) variables.
Example: 1989 GSS data

(from Demaris).

Cross-classification of respondents according to

- **Choice** for president in the 1988 presidential election (Dukakis or Bush).

- **Political View** with levels liberal, moderate, conservative.

<table>
<thead>
<tr>
<th>Political View</th>
<th>Vote Choice</th>
<th>Dukakis</th>
<th>Bush</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal</td>
<td>197</td>
<td>65</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>148</td>
<td>186</td>
<td>334</td>
<td></td>
</tr>
<tr>
<td>Conservative</td>
<td>68</td>
<td>242</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td></td>
<td>413</td>
<td>493</td>
<td>906</td>
<td></td>
</tr>
</tbody>
</table>
A More Recent Example

Cross-classification of respondents to the General Social Survey from **1996**.

- **Choice** for president in the 1992: presidential election:
 “If you voted in 1992, did you vote for Clinton, Bush or Perot?”

- **Political View** with levels liberal, moderate, conservative.
 “We hear a lot of talk these days about liberals and conservatives. I’m going to give you a scale . . . Where do you place yourself on this scale?”

The scale had 7 levels: extremely liberal, liberal, slightly liberal, moderate, etc., but I collapsed them in to 3.
The Data

<table>
<thead>
<tr>
<th>Political View</th>
<th>Bush</th>
<th>Clinton</th>
<th>Perot</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal</td>
<td>70</td>
<td>342</td>
<td>56</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td>(.15)</td>
<td>(.73)</td>
<td>(.12)</td>
<td>1.00</td>
</tr>
<tr>
<td>Moderate</td>
<td>195</td>
<td>332</td>
<td>101</td>
<td>628</td>
</tr>
<tr>
<td></td>
<td>(.31)</td>
<td>(.53)</td>
<td>(.16)</td>
<td>1.00</td>
</tr>
<tr>
<td>Conservative</td>
<td>382</td>
<td>199</td>
<td>117</td>
<td>698</td>
</tr>
<tr>
<td></td>
<td>(.55)</td>
<td>(.29)</td>
<td>(.17)</td>
<td>1.00</td>
</tr>
<tr>
<td>Total</td>
<td>647</td>
<td>873</td>
<td>274</td>
<td>1794</td>
</tr>
</tbody>
</table>
Statistical Independence

Between row and column variable means that

- The joint probabilities \(\{ \pi_{ij} \} \) of observations falling into a cell equal the product of the marginal probabilities,
 \[
 \pi_{ij} = \pi_i + \pi_j \quad \text{for all } i = 1, \ldots, I \quad \text{and} \quad j = 1, \ldots, J
 \]

- The frequencies (cell counts) equal
 \[
 \mu_{ij} = n \pi_{ij} = n \pi_i + \pi_j \quad \text{for all } i, j
 \]

- The probabilities \(\pi_{ij} \) are the parameters of Binomial or Multinomial distribution.

- In Log-linear models, the response variable equals the counts and expected cell counts \(\{ \mu_{ij} \} \), rather than cell probabilities \(\{ \pi_{ij} \} \); therefore, the random component is Poisson.

- Taking logarithms gives us a log-linear model of statistical independence
 \[
 \log(\mu_{ij}) = \log(n) + \log(\pi_i) + \log(\pi_j)
 \]
Log-Linear Model of Statistical Independence

The “log-linear model of independence” for 2–way contingency tables is

\[
\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y
\]

- This is an ANOVA-type representation.
- \(\lambda\) represents an “overall” effect or a constant.
 It term ensures that \(\sum_i \sum_j \mu_{ij} = n\).
- \(\lambda_i^X\) represents the “main” or marginal effect of the row variable \(X\). It represents the effect of classification in row \(i\).
 The \(\lambda_i^X\)’s ensure that \(\sum_j \mu_{ij} = \mu_{i+} = n_{i+}\).
- \(\lambda_j^Y\) represents the “main” or marginal effect of the column variable \(Y\). It represents the effect of classification in column \(j\).
 The \(\lambda_j^Y\)’s ensure that \(\sum_i \mu_{ij} = \mu_{+j} = n_{+j}\).
- The re-parameterization allow modeling association structure.
Log-linear model of Statistical Independence

\[\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y \]

\& hypothesis test of statistical independence in 2–way tables.

- The estimated expected cell counts for the chi-squared test of independence equal (from beginning of course)

\[\hat{\mu}_{ij} = \frac{n_i + n_j}{n} \]

which also equal the estimated fitted values for the independence log-linear model.

- The significance of this: The \(X^2 \) and \(G^2 \) tests of independence are goodness–of–fit tests of the independence log-linear model.

- The null hypothesis of independence is equivalent to

The model \(\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y \) holds.

- and the alternative hypothesis of dependence is equivalent to

The model \(\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y \) does not hold.
Example

```r
PROC GENMOD ORDER=DATA;
CLASS pview choice;
MODEL count = pview choice / LINK=log DIST=Poisson OBSTATS;
```

The observed and estimated fitted values

<table>
<thead>
<tr>
<th>Political View</th>
<th>Bush</th>
<th>Clinton</th>
<th>Perot</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal</td>
<td>70</td>
<td>342</td>
<td>56</td>
<td>468</td>
</tr>
<tr>
<td>(168.78)</td>
<td>(227.74)</td>
<td>(71.478)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>195</td>
<td>332</td>
<td>101</td>
<td>628</td>
</tr>
<tr>
<td>(226.49)</td>
<td>(305.60)</td>
<td>(95.915)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservative</td>
<td>382</td>
<td>199</td>
<td>117</td>
<td>698</td>
</tr>
<tr>
<td>(251.73)</td>
<td>(339.66)</td>
<td>(106.61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>647</td>
<td>873</td>
<td>274</td>
<td>1794</td>
</tr>
</tbody>
</table>

The fitted values satisfy the definition of independence perfectly. e.g., for the (Liberal, Bush) cell \(\frac{n_1 + n_{1+}}{n} = \frac{(468)(647)}{1794} = 168.78 \)
Independence also implies that the odds ratios for every 2×2 sub-table must equal 1.

For our example, fitted odds ratio for each of the 3 possible sub-tables for Bush and Clinton:

$\frac{(168.78)(305.60)}{(227.74)(226.49)} = 1.00$

$\frac{(226.49)(339.66)}{(305.60)(251.73)} = 1.00$

$\frac{(168.78)(339.66)}{(227.74)(251.73)} = 1.00$

The same is true for all possible (2×2) sub-tables.

Fit statistics for the independence log-linear model:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>df</th>
<th>Value</th>
<th>p–value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^2</td>
<td>4</td>
<td>252.10</td>
<td>< .0001</td>
</tr>
<tr>
<td>G^2</td>
<td>4</td>
<td>262.26</td>
<td>< .0001</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>7896.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These are the same the X^2 and G^2 we get when testing independence (i.e., what you get if you use PROC FREQ).

Any guesses as to what model might fit these data?
For $I \times J$ Tables

Random component. The $N = IJ$ counts in the cells of the contingency tables are assumed to be N independent observations of a Poisson random variable. Thus, we focus on expected values of counts:

$$E(\text{counts}) = \mu_{ij}$$

Link is log (canonical link for the Poisson distribution).

Systematic component is a linear predictor with discrete variables.

Loglinear model (of independence) is

$$\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y$$
Log-Linear Model Parameters

\[\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y \]

- The row and column variables (\(X\) and \(Y\), respectively) are both “response” variables (classification variables) in the sense that this model represents the relationship between the 2 variables.

- Log-linear models do not distinguish between “response” and explanatory (predictor) variables.

- When one variable is a response variable, then this influences (guides) the interpretation of parameters (as well as choice of model).

Case of an \(I \times 2\) tables where the column classification (\(Y\)) is the “response” or outcome variable and the row classification (\(X\)) is an explanatory variable.

e.g., 1992 Presidential election
E.g., 1992 Presidential Election

Just consider Clinton and Bush and re-fit the independence model.

Let $\pi = \text{Prob}(Y = 1) = \text{Prob(Clinton)}$, so

$$\logit(\pi) = \log(\mu_1/\mu_2)$$

$$= \log(\mu_1) - \log(\mu_2)$$

$$= (\lambda + \lambda_X^Y + \lambda_Y^X) - (\lambda + \lambda_X^Y + \lambda_Y^X)$$

$$= \lambda_Y^X - \lambda_Y^X$$

which does not depend on the row variable.

- The log-linear model of independence corresponds to the logit model with only an intercept term; that is,

$$\logit(\pi) = \alpha$$

where $\alpha = (\lambda_Y^X - \lambda_Y^X)$ is the same for all rows (levels of political view).

- Odds $= \exp(\alpha) = \exp(\lambda_Y^X - \lambda_Y^X)$ is the same for all rows.
Interpretation of Parameters

- When there are only two levels of the response variable, logit models are often preferable (they’re simpler in the sense that they contain fewer terms in the model). This is especially true when we have 2 or more explanatory variables.

- Log-linear models are primarily used when modeling the relationship among 2 or more categorical responses.

Odds ratios are functions of model parameters:

\[
\log(\text{odds ratio}) = \log(\theta_{12,12}) = \log \left(\frac{\mu_{11}\mu_{22}}{\mu_{12}\mu_{21}} \right) = (\lambda + \lambda_1^X + \lambda_1^Y) + (\lambda + \lambda_2^X + \lambda_2^Y) - (\lambda + \lambda_1^X + \lambda_2^Y) - (\lambda + \lambda_2^X + \lambda_1^Y) = 0
\]

So the odds ratio, \(\theta = \exp(0) = e^0 = 1 \).
Parameter Constraints

Identification constraints on parameters to be able to estimate them from data.

There is not a unique set of parameters.

There are \(I \) terms in the set \(\{ \lambda_i^X \} \), but 1 is redundant.

There are \(J \) terms in the set \(\{ \lambda_j^Y \} \), but 1 is redundant.

Possible (typical) constraints:

1. Fix 1 value in a set equal to a constant, usually 0. *SAS/GENMOD* sets the last one equal to 0, e.g., \(\lambda_I^X = 0 \ldots \) dummy coding (i.e., \(X = 0, 1 \))

2. Fix the sum of the terms equal to a constant, usually 0. *SAS/CATMOD* uses zero sum or “ANOVA-type” constraints. e.g., \(\sum_{i=1}^I \lambda_i^X = 0 \ldots \) “effect” coding (i.e., \(X = 1, 0, -1 \)).
What’s Unique about the Parameters?

- The differences between them are unique:

\[
(\hat{\lambda}_1^Y - \hat{\lambda}_2^Y) = \text{unique value}
\]

\[
(\hat{\lambda}_1^X - \hat{\lambda}_2^X) = \text{unique value}
\]

- Since differences are unique,

\[
\log(\text{odds}) = \log(\theta) = \text{unique value}
\]

and

\[
\text{odds} = \text{unique value}
\]

- The goodness-of-fit statistics are unique.

- The fitted values are unique, which takes more space to show...
Fitted Values are Unique

e.g., for 2×2

$$\log(\hat{\mu}_{ij}) = \alpha + \lambda^X X_i + \lambda^Y Y_j$$

For Dummy Coding (i.e., $X_1 = 0, X_2 = 1$ and $Y_1 = 0, Y_2 = 1$),

$$\log(\hat{\mu}_{ij}) = \begin{cases}
\lambda & \text{for } (1, 1) \\
\lambda + \lambda^X & \text{for } (2, 1) \\
\lambda + \lambda^Y & \text{for } (1, 2) \\
\lambda + \lambda^X + \lambda^Y & \text{for } (2, 2)
\end{cases}$$

For Effect Coding (i.e., $X_1 = -1, X_2 = 1$ and $Y_1 = -1, Y_2 = 1$),

$$\log(\hat{\mu}_{ij}) = \begin{cases}
\lambda^* - \lambda^*X - \lambda^*Y & \text{for } (1, 1) \\
\lambda^* + \lambda^*X - \lambda^*Y & \text{for } (2, 1) \\
\lambda^* - \lambda^*X + \lambda^*Y & \text{for } (1, 2) \\
\lambda^* + \lambda^*X + \lambda^*Y & \text{for } (2, 2)
\end{cases}$$

What’s the correspondence?
Saturated Log-linear Model for 2–way Tables

If rows and columns are dependent, then

$$\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY}$$

- λ, λ_i^X, and λ_j^Y, are the overall and marginal effect terms (as defined before).
- λ_{ij}^{XY}'s
 - Represent the association between X and Y.
 - Reflect the departure or deviations from independence.
 - Ensure that $\mu_{ij} = n_{ij}$
- Fits the data perfectly; the fitted values are exactly equal to the observed values.
- Has as many unique parameters are there are cells in the table (i.e., $N = IJ$), so $df = 0$.
- Called the “Saturated Model”.
- Is the most complex model possible for a 2–way table.
- Has independence as a special case (i.e., the model with $\lambda_{ij}^{XY} = 0$ for all i and j).
Parameters and Odds Ratios

There is a functional relationship between the model parameters and odds ratios, which is how we are defining and measuring interactions.

\[
\log(\theta_{ij', j'j}) = \log(\frac{\mu_{ij} \mu_{i'j'}}{\mu_{i'j} \mu_{ij'}}) = \log(\mu_{ij}) + \log(\mu_{i'j'}) - \log(\mu_{i'j}) - \log(\mu_{ij'}) = (\lambda + \lambda_{ij}^X + \lambda_{ij'}^Y + \lambda_{ij}^{XY}) + (\lambda + \lambda_{i'j}^X + \lambda_{i'j'}^Y + \lambda_{i'j}^{XY}) - (\lambda + \lambda_{ij}^X + \lambda_{ij'}^Y + \lambda_{ij}^{XY}) - (\lambda + \lambda_{i'j}^X + \lambda_{i'j'}^Y + \lambda_{i'j}^{XY}) = \lambda_{ij}^{XY} + \lambda_{i'j'}^{XY} - \lambda_{ij'}^{XY} - \lambda_{ij'}^{XY}
\]

The odds ratio \(\theta \) measures the strength of the association and depends only on the interaction terms \(\{\lambda_{ij}^{XY}\} \).

How many numbers do we need to completely characterize the association in an \(I \times J \) table?
Parameters Needed to Describe Association

\((I - 1)(J - 1)\), the number of unique \(\lambda_{i,j}^{XY}\)’s.

Identification constraints:
- Fix 1 value equal to a constant, e.g.,
 \[\lambda_{i1}^{XY} = \lambda_{1j}^{XY} = 0 \]
- Fix the sum equal to a constant, i.e.,
 \[\sum_i \lambda_{ij}^{XY} = \sum_j \lambda_{ij}^{XY} = 0 \]

Count of unique parameters:

<table>
<thead>
<tr>
<th>Terms</th>
<th>Number of Terms</th>
<th>Number of Constraints</th>
<th>Number Unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>({\lambda_i^X})</td>
<td>(I)</td>
<td>1</td>
<td>(I - 1)</td>
</tr>
<tr>
<td>({\lambda_j^Y})</td>
<td>(J)</td>
<td>1</td>
<td>(J - 1)</td>
</tr>
<tr>
<td>({\lambda_{i,j}^{XY}})</td>
<td>(IJ)</td>
<td>(I + J - 1)</td>
<td>((I - 1)(J - 1))</td>
</tr>
<tr>
<td>Total</td>
<td>(IJ = N)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cells of table
Parameters Needed to Describe Association

We generally hope to find models that are simpler than the data itself (simpler than the saturated model). Simpler models “smooth” the sample data and provide more parsimonious descriptions.

When we have 3 or more variables, we can include 2-way interactions and the model will not be saturated.
Hierarchical Models

We’ll restrict attention to hierarchical models.

- Hierarchical models include all lower-order terms that comprise the higher-order terms in the model.

Is this a hierarchical model?

\[
\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_{ij}^{XY}
\]

- Restrict attention to hierarchical models because
 - We want interaction terms to represent just the association (dependency).
 - Without lower order terms, the statistical significance and (substantive) interpretation of interaction terms would depend on how variables were coded.
 - With hierarchical models, coding doesn’t matter.

- If there is an interaction in the data, we do not look at the lower-order terms, but interpret the higher-order (interaction) terms. It can be misleading to look at the lower-order terms, because the values will depend on the coding scheme.
Log-linear Models for 3–way Tables

Example: We can add a third variable to our GSS presidential election data — gender.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Political View</th>
<th>Choice for President</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bush</td>
<td>Clinton</td>
</tr>
<tr>
<td>Males</td>
<td>Liberal</td>
<td>26</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>82</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Conservative</td>
<td>202</td>
<td>75</td>
</tr>
<tr>
<td>Females</td>
<td>Liberal</td>
<td>44</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>113</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Conservative</td>
<td>180</td>
<td>124</td>
</tr>
</tbody>
</table>

The most saturated log-linear model for this table is

$$\log(\mu_{ijk}) = \lambda + \lambda_i^P + \lambda_j^C + \lambda_k^G + \lambda_{ij}^{PC} + \lambda_{ik}^{PG} + \lambda_{jk}^{CG} + \lambda_{ijk}^{PCG}$$

where $G = \text{gender}$, $P = \text{political view}$, $C = \text{choice}$.
More generally, the most complex log-linear model (the saturated model) for a 3–way table

$$\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ijk}^{XYZ}$$

Simpler models set higher order interaction terms equal to 0.

Overview of hierarchy of models for 3–way contingency tables
(from complex to simple)
Overview of Models for 3–way Table

3–way Association

Homogeneous association

Conditional Independence

Joint Independence

Complete Independence
Blue Collar worker data

(Andersen, 1985)

<table>
<thead>
<tr>
<th></th>
<th>Bad Management</th>
<th></th>
<th>Good Management</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Worker’s</td>
<td></td>
<td>Worker’s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>satisfaction</td>
<td></td>
<td>satisfaction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Supervisor’s</td>
<td>103</td>
<td>87</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>satisfaction</td>
<td>32</td>
<td>42</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>129</td>
<td>264</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>137</td>
<td>314</td>
<td>451</td>
<td>283</td>
</tr>
</tbody>
</table>

\[\hat{\theta}_{bad} = 1.55 \quad \text{and} \quad 95\% \text{ CI for } \theta_{bad} (0.90, 1.67) \]

\[\hat{\theta}_{good} = 1.42 \quad \text{and} \quad 95\% \text{ CI for } \theta_{good} (0.94, 2.14) \]
Blue Collar worker data Analyses

- CMH for testing whether worker and supervisor satisfaction is conditionally independent given management quality

 \[\chi^2 = 5.42, \ p-value = .02 \]

- The combined \(G^2 \)'s from separate partial tables

 \[\chi^2 = 2.57 + 2.82 = 5.39, \ df = 1 + 1 = 2, \ p-value = .02. \]

<table>
<thead>
<tr>
<th>Statistic</th>
<th>df</th>
<th>Bad Management</th>
<th>Good Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Value (p)-value</td>
<td>Value (p)-value</td>
</tr>
<tr>
<td>(X^2)</td>
<td>1</td>
<td>2.56 (.11)</td>
<td>2.85 (.09)</td>
</tr>
<tr>
<td>(G^2)</td>
<td>1</td>
<td>2.57 (.11)</td>
<td>2.82 (.09)</td>
</tr>
</tbody>
</table>

- Mantel-Haenszel estimator of common odds ratio (for Worker–Supervisor or “W-S” odds ratio) = 1.47.

- Breslow-Day statistic = .065, \(df = 1, \ p-value = .80 \).
Complete Independence

There are no interactions; everything is independent of everything else.

\[
\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z
\]

Depending on author, this model is denoted by
- \((X, Y, Z)\) (e.g., Agresti) or \([X, Y, Z]\)
- \((X)(Y)(Z)\) or \([X][Y][Z]\) (e.g., Fienberg).

Degrees of freedom are computed in the usual way:

\[
df = \# \text{ cells} - \# \text{ unique parameters} \\
= \# \text{ cells} - (\# \text{ parameters} - \# \text{ constraints}) \\
= IJK - 1 - (I - 1) - (J - 1) - (K - 1)
\]

In terms of associations, all partial odds ratios equal 1,

\[
\frac{\theta_{XY}(k)}{\theta_{ii',jj',(k)}} = \frac{\mu_{ijk}\mu_{i'j'k'}}{\mu_{i'j'k}\mu_{ijk'}} = 1 \\
\frac{\theta_{YZ}(i)}{\theta_{(i),jj',kk'}} = \frac{\mu_{ijk}\mu_{ij'k'}}{\mu_{ij'k}\mu_{ijk'}} = 1 \\
\frac{\theta_{XZ}(j)}{\theta_{ii',(j),kk'}} = \frac{\mu_{ijk}\mu_{i'jk'}}{\mu_{i'jk}\mu_{ijk'}} = 1
\]
Joint Independence

Two variables are “jointly” independent of the third variable. For example, X and Y and jointly independent of Z,

$$\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY}$$

This model may be denoted as

- (XY, Z) or $[XY, Z]$.
- $(XY)(Z)$ or $[XY][Z]$.

Degrees of Freedom:

$$df = IJK - 1 - (I - 1) - (J - 1) - (K - 1) - (I - 1)(J - 1)$$

$$= (IJ - 1)(K - 1)$$

The partial or conditional odds ratios for XZ given Y and the odds ratios for YZ given X equal 1.

$$\theta_{XZ(j)} = \theta_{ii', (j), kk'} = \frac{\mu_{ijk} \mu_{i' j' k'}}{\mu_{i' j' k} \mu_{ijk}} = 1$$

$$\theta_{YZ(i)} = \theta_{(i), jj', kk'} = \frac{\mu_{ijk} \mu_{ij' k'}}{\mu_{ij' k} \mu_{ijk'}} = 1$$

And what does $\theta_{XY(k)}$ equal?
Joint Independence (continued)

\[
\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY}
\]

\[
\log(\theta_{XY}(k)) = \log(\theta_{i'i',j'j'(k)}) = \log(\mu_{ijk}/\mu_{i'j'k}) = (\lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY})
\]

\[
= (\lambda + \lambda_i^{X'} + \lambda_j^{Y'} + \lambda_k^Z + \lambda_{i'j'}^{XY'})
\]

\[
- (\lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY})
\]

\[
- (\lambda + \lambda_i^{X'} + \lambda_j^{Y'} + \lambda_k^Z + \lambda_{i'j'}^{XY'})
\]

\[
= \lambda_{ij}^{XY} + \lambda_{i'j'}^{XY'} - \lambda_{i'j}^{XY'} - \lambda_{ij}^{XY'}
\]

\[
\theta_{XY}(k) = \theta_{i'i',j'j'(k)} = \exp(\lambda_{ij}^{XY} + \lambda_{i'j'}^{XY'} - \lambda_{i'j}^{XY'} - \lambda_{ij}^{XY'}) = \frac{e^{\lambda_{ij}^{XY}} e^{\lambda_{i'j'}^{XY'}}}{e^{\lambda_{i'j}^{XY'}} e^{\lambda_{ij}^{XY'}}}
\]

- The interaction terms represent the association between \(X\) and \(Y\).
- Since \(\theta_{XY}(k)\) does not depend on \(k\) (level of variable) \(Z\), we know that \(\theta_{XY}(1) = \theta_{XY}(2) = \ldots = \theta_{XY}(K)\).
Conditional Independence

Two variables are conditionally independent given the third variable. e.g., the model in which Y and Z are conditionally independent given X equals

$$\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ}$$

This model may be denoted by

- (XY, XZ) or $[XY, XZ]$.
- $(XY)(XZ)$ or $[XY][XZ]$.

$$df = IJK - 1 - (I - 1) - (J - 1) - (K - 1)$$

$$- (I - 1)(J - 1) - (I - 1)(K - 1)$$

$$= I(J - 1)(K - 1)$$

The partial odds ratios of YZ given X equals 1:

$$\log(\theta_{YZ(i)}) = \log(\theta_{(i),jj',kk'})$$

$$= \log(\mu_{ijk}/\mu_{i'j'k'}/\mu_{ij'k}/\mu_{i'j'k'})$$

$$= \log(\mu_{ijk}) + \log(\mu_{ij'k'}) - \log(\mu_{ij'k}) - \log(\mu_{i'j'k'}) = 0$$

$$\theta_{YZ(i)} = \theta_{(i),jj',kk'} = \exp(0) = e^0 = 1$$
Conditional Independence: $\theta_{XY}(k) \ & \ & \theta_{XZ}(j)$

\[\begin{align*}
\theta_{XY}(k) &= \theta_{ii',jj'}(k) = \exp(\lambda_{ij}^{XY} + \lambda_{i'j'}^{XY} - \lambda_{ii'}^{XY} - \lambda_{jj'}^{XY}) \\
\theta_{XZ}(j) &= \theta_{ii',(j),kk'} = \exp(\lambda_{ik}^{XZ} + \lambda_{i'k'}^{XZ} - \lambda_{ii'}^{XZ} - \lambda_{kk'}^{XZ})
\end{align*} \]

- The partial odds ratios are completely characterized by the corresponding 2–way interaction terms from the model (and no other parameters).
- Neither of these depend on the level of the third variable.
- Since the partial odds ratios are equal across levels of the third variable,
 \[
 \theta_{XY}(1) = \theta_{XY}(2) = \cdots = \theta_{XY}(K)
 \]
 and
 \[
 \theta_{XZ}(1) = \theta_{XZ}(2) = \cdots = \theta_{XZ}(J)
 \]
Homogeneous Association

or the “no 3–factor interaction model”.

This is a model of association; it is not an “independence” model, but it is also not the most complex model possible.

\[
\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ}
\]

This model may be denoted by

- \((XY, XZ, YZ)\) or \([XY, XZ, YZ]\).
- \((XY)(XZ)(YZ)\) or \([XY] [XZ] [YZ]\).

\[
df = IJK - 1 - (I - 1) - (J - 1) - (K - 1) - (I - 1)(J - 1)
- (I - 1)(K - 1) - (J - 1)(K - 1)
= (I - 1)(J - 1)(K - 1)
\]

df = the number of odds ratios to completely represent a 3–way association?

None of the partial odds ratios (necessarily) equal 1.
Homogeneous Association (continued)

The partial odds ratios are a direct function of the model parameters

The partial (conditional) odds ratios equal

\[
\theta_{XY}(k) = \theta_{ii',jj',(k)} = \exp(\lambda_{ij}^{XY} + \lambda_{i'j'}^{XY} - \lambda_{i'j}^{XY} - \lambda_{ij'}^{XY})
\]

\[
\theta_{XZ}(j) = \theta_{ii',(j),kk'} = \exp(\lambda_{ik}^{XZ} + \lambda_{i'k'}^{XZ} - \lambda_{i'k}^{XZ} - \lambda_{ik'}^{XZ})
\]

\[
\theta_{YZ}(i) = \theta_{(i),jj',(k)k'} = \exp(\lambda_{jk}^{YZ} + \lambda_{j'k'}^{YZ} - \lambda_{j'k}^{YZ} - \lambda_{jk'}^{YZ})
\]

Each of the partial odds ratios for 2 variables given levels of the third variable

- depends only on the corresponding 2–way interaction terms.
- do not depend on levels of the third variable.
- are equal across levels of the third variable.
3–way Association (the saturated model)

This model has a three factor association
\[\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ijk}^{XYZ} \]

This model may be denoted by \((XYZ)\) or \([XYZ]\).

\[df = 0 \]

The partial odds ratios for two variables given levels of the third variable need not be equal. e.g.,
\[\log(\theta_{XY(k)}) = \log(\theta_{ii',jj'(k)}) \]
\[= \log(\frac{\mu_{ijk} \mu_{i'j'k}}{\mu_{ij'k} \mu_{i'jk}}) \]
\[= \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ijk}^{XYZ} \]
\[+ \lambda + \lambda_i^{X'} + \lambda_j^{Y'} + \lambda_k^Z + \lambda_{i'j}^{X'Y} + \lambda_{i'k}^{X'Z} + \lambda_{j'k}^{Y'Z} + \lambda_{i'j'k}^{X'Y'Z} \]
\[- \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ijk}^{XYZ} \]
\[- \lambda + \lambda_i^{X'} + \lambda_j^{Y'} + \lambda_k^Z + \lambda_{i'j}^{X'Y} + \lambda_{i'k}^{X'Z} + \lambda_{j'k}^{Y'Z} + \lambda_{i'j'k}^{X'Y'Z} \]
\[= (\lambda_{ij}^{XY} + \lambda_{i'j'}^{XY} - \lambda_{i'j}^{XY} - \lambda_{ij}^{XY}) \]
\[+ (\lambda_{ij}^{XYZ} + \lambda_{i'j'}^{XYZ} - \lambda_{i'j}^{XYZ} - \lambda_{ij}^{XYZ}) \]
3–way Association

A measure/definition of 3–way association is the ratio of partial odds ratios (ratios of ratios of ratios),

\[\Theta_{i'i', j'j', k'k'} = \frac{\theta_{XY(k)}}{\theta_{XY(k')}} \]

which in terms of our model parameters equals

\[\Theta_{i'i', j'j', k'k'} = \frac{\theta_{i'i', j'j'(k)}}{\theta_{i'i', j'j'(k')}} \]

\[= \exp(\lambda_{i'j'k} + \lambda_{i'j'k'} + \lambda_{i'j'k'} + \lambda_{i'j'k'} - \lambda_{i'j'k} - \lambda_{i'j'k} - \lambda_{i'j'k} - \lambda_{i'j'k'}) \]

That is, the 3–way association is represented by the 3–way interaction terms \(\{\lambda_{i'j'k}\} \).

There are analogous expressions for \(\theta_{XZ(j)} \) and \(\theta_{YZ(i)} \).
Summary of Hierarchy of Models

<table>
<thead>
<tr>
<th>3–way Association</th>
<th>(XYZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneous association</td>
<td>(XY, XZ, YZ)</td>
</tr>
<tr>
<td>Conditional Independence</td>
<td>(XY, XZ)</td>
</tr>
<tr>
<td>Joint Independence</td>
<td>(XY, Z)</td>
</tr>
<tr>
<td>Complete Independence</td>
<td>(X, Y, Z)</td>
</tr>
</tbody>
</table>

Any model that lies below a given model may be a special case of the more complex model(s).
Example: Blue Collar Workers

Fitted values and observed values from some models

<table>
<thead>
<tr>
<th>Manage</th>
<th>Super</th>
<th>Worker</th>
<th>n_{ijk}</th>
<th>M, S, W</th>
<th>MS, W</th>
<th>MS, MW</th>
<th>MSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>bad</td>
<td>low</td>
<td>low</td>
<td>103</td>
<td>50.15</td>
<td>71.78</td>
<td>97.16</td>
<td>102.26</td>
</tr>
<tr>
<td>bad</td>
<td>low</td>
<td>high</td>
<td>87</td>
<td>82.59</td>
<td>118.22</td>
<td>92.84</td>
<td>87.74</td>
</tr>
<tr>
<td>bad</td>
<td>high</td>
<td>low</td>
<td>32</td>
<td>49.59</td>
<td>27.96</td>
<td>37.84</td>
<td>32.74</td>
</tr>
<tr>
<td>bad</td>
<td>high</td>
<td>high</td>
<td>42</td>
<td>81.67</td>
<td>46.04</td>
<td>36.16</td>
<td>41.26</td>
</tr>
<tr>
<td>good</td>
<td>low</td>
<td>low</td>
<td>59</td>
<td>85.10</td>
<td>63.47</td>
<td>51.03</td>
<td>59.74</td>
</tr>
<tr>
<td>good</td>
<td>low</td>
<td>high</td>
<td>109</td>
<td>140.15</td>
<td>104.53</td>
<td>116.97</td>
<td>108.26</td>
</tr>
<tr>
<td>good</td>
<td>high</td>
<td>low</td>
<td>78</td>
<td>84.15</td>
<td>105.79</td>
<td>85.97</td>
<td>77.26</td>
</tr>
<tr>
<td>good</td>
<td>high</td>
<td>high</td>
<td>205</td>
<td>138.59</td>
<td>174.21</td>
<td>197.28</td>
<td>205.74</td>
</tr>
</tbody>
</table>

Example: (M, S, W) and partial odds ratio for S and W

$$\hat{\theta}_{SW} = (50.15)(81.67)/(82.59)(49.59) = 1.00$$
Fitted (partial) Odds Ratios

<table>
<thead>
<tr>
<th>Model</th>
<th>W and S</th>
<th>M and W</th>
<th>M and S</th>
</tr>
</thead>
<tbody>
<tr>
<td>((M, S, W))</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>((MS, W))</td>
<td>1.00</td>
<td>1.00</td>
<td>4.28</td>
</tr>
<tr>
<td>((MS, MW))</td>
<td>1.00</td>
<td>2.40</td>
<td>4.32</td>
</tr>
<tr>
<td>((MS, WS, MW))</td>
<td>1.47</td>
<td>2.11</td>
<td>4.04</td>
</tr>
<tr>
<td>((MSW))–level 1</td>
<td>1.55</td>
<td>2.19</td>
<td>4.26</td>
</tr>
<tr>
<td>((MSW))–level 2</td>
<td>1.42</td>
<td>2.00</td>
<td>3.90</td>
</tr>
</tbody>
</table>
Inference for Log-linear Models

1. Chi-squared goodness of fit tests.

2. Residuals.

3. Tests about partial associations (e.g., $H_O : \lambda_{i,j}^{XY} = 0$ for all i, j).

4. Confidence intervals for odds ratios.
Chi–squared goodness-of-fit tests

where H_O is
- a model “holds”.
- a model gives a good (accurate) description/representation of the data.
- $\log(\mu_{ij}) = \text{some model}$
 (i.e., expected frequencies given by loglinear model.

For “large” samples chi–squared statistics to test this hypothesis, we compare the observed and estimated expected frequencies.

Likelihood ratio statistic:

$$G^2 = 2 \sum_i \sum_j \sum_k n_{ijk} \log \left(\frac{n_{ijk}}{\hat{\mu}_{ijk}} \right)$$

Pearson statistic:

$$X^2 = \sum_i \sum_j \sum_k \frac{(n_{ijk} - \hat{\mu}_{ijk})^2}{\hat{\mu}_{ijk}}$$
Chi–squared goodness-of-fit tests

If H_O is true and for larger samples, these statistics are approximately chi-squared distributed with degrees of freedom

\[
df = (# \text{ cells}) - (# \text{ non-redundant parameters})
\]

\[
= (# \text{ cells}) - (# \text{ parameters}) + (# \text{ id constraints})
\]

Blue collar worker data:

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>G^2</th>
<th>p–value</th>
<th>X^2</th>
<th>p–value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M, S, W)</td>
<td>4</td>
<td>118.00</td>
<td>< .001</td>
<td>128.09</td>
<td>< .001</td>
</tr>
<tr>
<td>$(M S, W)$</td>
<td>3</td>
<td>35.60</td>
<td>< .001</td>
<td>35.72</td>
<td>< .001</td>
</tr>
<tr>
<td>$(M W, S)$</td>
<td>3</td>
<td>87.79</td>
<td>< .001</td>
<td>85.02</td>
<td>< .001</td>
</tr>
<tr>
<td>$(M, W S)$</td>
<td>3</td>
<td>102.11</td>
<td>< .001</td>
<td>99.09</td>
<td>< .001</td>
</tr>
<tr>
<td>$(M W, SW)$</td>
<td>2</td>
<td>71.90</td>
<td>< .001</td>
<td>70.88</td>
<td>< .001</td>
</tr>
<tr>
<td>$(M S, MW)$</td>
<td>2</td>
<td>5.39</td>
<td>.07</td>
<td>5.41</td>
<td>.07</td>
</tr>
<tr>
<td>$(M S, WS)$</td>
<td>2</td>
<td>19.71</td>
<td>< .001</td>
<td>19.88</td>
<td>< .001</td>
</tr>
<tr>
<td>$(M W, SW, MS)$</td>
<td>1</td>
<td>.065</td>
<td>.80</td>
<td>.069</td>
<td>.80</td>
</tr>
</tbody>
</table>

These are all global tests.
Residuals

Local (miss)fit. A good model has small residuals.

We can use Pearson residuals

\[e_{ijk} = \frac{(\text{observed} - \text{expected})}{\text{Var(expected)}} \]

\[= \frac{(n_{ijk} - \hat{\mu}_{ijk})}{\hat{\mu}_{ijk}} \]

or

adjusted residual = \[\frac{e_{ijk}}{(1 - h_{ijk})} \]

where \(h_{ijk} \) equals the leverage of cell \((i, j, k)\).

If the model holds, then adjusted residuals \(\approx N(0, 1) \)

Adjusted residuals suggest a lack of fit of the model
- When there are few cells (small \(N \)) and adjusted residuals \(> 2 \).
- When these are lots and lost of cells (larger \(N \)) and adjusted residuals \(> 3 \).
Residuals & Blue Collar Data

<table>
<thead>
<tr>
<th>Manage</th>
<th>Super</th>
<th>Worker</th>
<th>(n_{ijk})</th>
<th>(\hat{\mu}_{ijk})</th>
<th>adj res</th>
<th>(\hat{\mu}_{ijk})</th>
<th>adj res</th>
</tr>
</thead>
<tbody>
<tr>
<td>bad</td>
<td>low</td>
<td>low</td>
<td>103</td>
<td>97.16</td>
<td>1.60</td>
<td>102.26</td>
<td>.25</td>
</tr>
<tr>
<td>bad</td>
<td>low</td>
<td>high</td>
<td>87</td>
<td>92.84</td>
<td>-1.60</td>
<td>87.74</td>
<td>-.25</td>
</tr>
<tr>
<td>bad</td>
<td>high</td>
<td>low</td>
<td>32</td>
<td>37.84</td>
<td>-1.60</td>
<td>32.74</td>
<td>-.25</td>
</tr>
<tr>
<td>bad</td>
<td>high</td>
<td>high</td>
<td>42</td>
<td>36.16</td>
<td>1.60</td>
<td>41.26</td>
<td>.25</td>
</tr>
<tr>
<td>good</td>
<td>low</td>
<td>low</td>
<td>59</td>
<td>51.03</td>
<td>1.69</td>
<td>59.74</td>
<td>-.25</td>
</tr>
<tr>
<td>good</td>
<td>low</td>
<td>high</td>
<td>109</td>
<td>116.97</td>
<td>-1.69</td>
<td>108.26</td>
<td>.25</td>
</tr>
<tr>
<td>good</td>
<td>high</td>
<td>low</td>
<td>78</td>
<td>85.97</td>
<td>1.69</td>
<td>77.26</td>
<td>.25</td>
</tr>
<tr>
<td>good</td>
<td>high</td>
<td>high</td>
<td>205</td>
<td>197.28</td>
<td>-1.69</td>
<td>205.74</td>
<td>-.25</td>
</tr>
</tbody>
</table>

- \(df \) for the model \((MS, MW) \) equals 2 and therefore there are only 2 non-redundant residuals.

- \(df \) for the model \((MS, MW, WS) \) equals 1 and therefore there is only 1 non-redundant residual.
Hypothesis about partial association

The following are all equivalent statements of the null hypothesis considered here:

- There is no partial association between two variables given the level of the third variable.

 e.g., There is no partial association between supervisor’s job satisfaction and worker’s satisfaction given management quality.

- The conditional or partial odds ratios equal 1.00.

 e.g., \(\theta_{SW(i)} = 1.00 \).

- The two-way interaction terms equal zero.

 e.g., \(\lambda_{jk}^{SW} = 0 \).
Tests about partial association

To test partial association, we use the likelihood ratio statistic $-2(L_O - L_1)$ to test the difference between a restricted and a more complex model.

e.g., The restricted model or M_O is (MS, MW) or

$$\log(\mu_{ijk}) = \lambda + \lambda_i^M + \lambda_j^S + \lambda_k^W + \lambda_{ij}^{MS} + \lambda_{ik}^{MW}$$

and the more complex model M_1 is (MS, MW, MS)

$$\log(\mu_{ijk}) = \lambda + \lambda_i^M + \lambda_j^S + \lambda_k^W + \lambda_{ij}^{MS} + \lambda_{ik}^{MW} + \lambda_{ij}^{SW}$$

The likelihood ratio statistic $-2(L_O - L_1)$ equals the difference between the deviances of the 2 models, or equivalently the difference in G^2 for testing model fit.

e.g.,

$$G^2 [(MS, MW)|(MS, MW, WS)] = G^2 (MS, MW) - G^2 (MS, MW, WS)$$

and $df = df (MS, MW) - df (MS, MW, WS)$.
Example Testing partial association

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>G^2</th>
<th>p</th>
<th>H_O</th>
<th>Δdf</th>
<th>ΔG^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MW, SW, MS)</td>
<td>1</td>
<td>.065</td>
<td>.80</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(MW, SW)</td>
<td>2</td>
<td>71.90</td>
<td>< .001</td>
<td>$\lambda_{ij}^{MS} = 0$</td>
<td>1</td>
<td>71.835</td>
<td>< .001</td>
</tr>
<tr>
<td>(MS, MW)</td>
<td>2</td>
<td>5.39</td>
<td>.07</td>
<td>$\lambda_{jk}^{SW} = 0$</td>
<td>1</td>
<td>5.325</td>
<td>.02</td>
</tr>
<tr>
<td>(MS, WS)</td>
<td>2</td>
<td>19.71</td>
<td>< .001</td>
<td>$\lambda_{ik}^{MW} = 0$</td>
<td>1</td>
<td>19.645</td>
<td>< .001</td>
</tr>
</tbody>
</table>

Sample size and hypothesis tests:

- With small samples, “reality may be much more complex than indicated by the simplest model that passed the goodness-of-fit test.

- With large samples, “...statistically significant effects can be weak and unimportant.”
Summary of model fits and conditional tests

Log-linear Models for 2-way Tables

Parameter Constraints

Log-linear Models for 3-way Tables

Inference for Log-linear Models
statistical versus practical significance

Log-linear Models for 4+–Way Tables

Logit–Log-linear Model Connection

Strategies in (Log-linear) Model Selection

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>G^2</th>
<th>Δdf</th>
<th>ΔG^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MSW)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.065</td>
</tr>
<tr>
<td>(MS, MW, SW)</td>
<td>1</td>
<td></td>
<td>5.33</td>
<td>19.645</td>
</tr>
<tr>
<td>(MS, MW)</td>
<td>2</td>
<td>5.39</td>
<td></td>
<td>19.39</td>
</tr>
<tr>
<td>(MS, SW)</td>
<td>2</td>
<td>19.71</td>
<td></td>
<td>71.90</td>
</tr>
<tr>
<td>(MW, SW)</td>
<td>2</td>
<td>71.90</td>
<td></td>
<td>71.90</td>
</tr>
<tr>
<td>(MS, W)</td>
<td>3</td>
<td>35.6</td>
<td></td>
<td>87.79</td>
</tr>
<tr>
<td>(MW, S)</td>
<td>3</td>
<td>87.79</td>
<td></td>
<td>102.11</td>
</tr>
<tr>
<td>(M, SW)</td>
<td>3</td>
<td>102.11</td>
<td></td>
<td>102.11</td>
</tr>
<tr>
<td>(M, S, W)</td>
<td>4</td>
<td>118.0</td>
<td></td>
<td>118.0</td>
</tr>
</tbody>
</table>

$\Delta d f = 1$
$\Delta G^2 = 0.065$
Confidence Intervals for Odds Ratios

... a bit more informative than hypothesis testing alone.

We know that odds ratios are direct functions of log-linear model parameters.

e.g., Suppose that we are interested in an estimate of the SW partial odds ratio. Using the estimated parameters of the homogeneous association model (MS, MW, SW) (estimated using SAS/GENMOD,

<table>
<thead>
<tr>
<th>Estimate</th>
<th>ASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\lambda}_{SW}^{low,low}$ = .3847</td>
<td>.1667</td>
</tr>
<tr>
<td>$\hat{\lambda}_{SW}^{low,hi}$ = .0000</td>
<td>.0000</td>
</tr>
<tr>
<td>$\hat{\lambda}_{SW}^{hi,low}$ = .0000</td>
<td>.0000</td>
</tr>
<tr>
<td>$\hat{\lambda}_{SW}^{hi,hi}$ = .0000</td>
<td>.0000</td>
</tr>
</tbody>
</table>
Confidence Intervals for Odds Ratios

\[
\log(\hat{\theta}_{SW(i)}) = \lambda_{\text{low,low}} + \lambda_{\text{hi,hi}} - \lambda_{\text{low,hi}} - \lambda_{\text{hi,low}} = .3827 + 0.00 - 0.00 - 0.00 = .3827
\]

and \(\hat{\theta}_{SW(i)} = e^{.3827} = 1.4662 \).

A \((1 - \alpha) \times 100\%\) confidence interval for \(\log(\theta_{SW(i)}) \) is

\[
\log(\hat{\theta}_{SW(i)}) \pm z_{\alpha/2}(ASE)
\]

e.g., A 95% confidence interval for the log of the supervisor by worker satisfaction odds ratio is

\[.3827 \pm 1.96(.1667) \rightarrow (.05596, .70943)\]

For confidence interval for the odds ratio take the anti-log of the interval for \(\log(\theta_{SW(i)}) \) to get the confidence interval for the odds ratio. So the 95% confidence interval for the (partial) odds ratio \(\theta_{SW(i)} \) is

\[(e^{.05596}, e^{.70943}) \rightarrow (1.058, 2.033)\]

Identification constraints don’t matter for the end results.
Statistical versus Practical Significance and Large Samples

For the blue collar worker data, two models that could be a good model (representation) of the data.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>In favor of ((MS, MW))</th>
<th>In favor of ((MS, MW, SW))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model goodness of fit (G^2)</td>
<td>5.39</td>
<td>.065</td>
</tr>
<tr>
<td>(df = 2, p = .07)</td>
<td>with (df = 1, p = .80)</td>
<td></td>
</tr>
<tr>
<td>Largest adjusted residual</td>
<td>1.69</td>
<td>.25</td>
</tr>
<tr>
<td>Likelihood ratio</td>
<td>(G^2 = 5.325)</td>
<td></td>
</tr>
<tr>
<td>test of (\lambda_{SW}^{jk} = 0)</td>
<td>—</td>
<td>(df = 1, p = .02)</td>
</tr>
<tr>
<td>Complexity</td>
<td>simpler</td>
<td>more complex</td>
</tr>
</tbody>
</table>

Question: Do we really need the SW partial association? Weak effect, but is significant due to large sample size \(n = 715 \) relative to table size \(N = 2 \times 2 \times 2 = 8 \)?
When there is more than one reasonable model, additional things to consider in choosing a single “best” model are

1. Substantive importance and considerations.
2. Closeness between observed and fitted odds ratios.
3. Dissimilarity index.
4. Correlations between observed and fitted values.
5. Information Criteria (AIC, BIC & others).
6. Analysis of association.

Let’s see if these help in making the decision between \((M_S, M_W)\) and \((M_S, M_W, S_W)\).
Similarity between the Fitted Odds Ratios

If two models have nearly the same values for the odds ratio, then choose the simpler one.

What constitutes “nearly the same values” is a subjective decision.

Fitted partial odds ratios based two best model and the observed partial odds ratios for the worker satisfaction data:

<table>
<thead>
<tr>
<th>Model</th>
<th>Fitted Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W–S</td>
</tr>
<tr>
<td>$(M S, M W)$</td>
<td>1.00</td>
</tr>
<tr>
<td>$(M S, W S, M W)$</td>
<td>1.47</td>
</tr>
<tr>
<td>Observed or $(M SW)$–level 1</td>
<td>1.55</td>
</tr>
<tr>
<td>$(M SW)$–level 2</td>
<td>1.42</td>
</tr>
</tbody>
</table>

They seem similar. Whether they are “close” enough, that depends on purpose or uses you’ll make of the results.
Dissimilarity Index

For a table of with

Any dimension (e.g., \(I \times J\), \(I \times J \times K\), etc).

Cell counts equal to \(n_i = np_i\).

Fitted counts equal to \(\hat{\mu}_i = n\hat{\pi}_i\).

The “Dissimilarity Index” is a summary statistic of how close the fitted values of a model are to the data. It equals

\[
D = \frac{\sum_i |n_i - \hat{\mu}_i|}{2n} = \frac{\sum_i |p_i - \hat{\pi}_i|}{2}
\]

Properties of \(D\):

- \(0 \leq D \leq 1\).
- \(D\) is the proportion of sample cases that need to move to a different cell to have the model fit perfectly.
- Small \(D\) means that there is little difference between fitted values and observed counts.
- Larger \(D\) means that there is a big difference between fitted values and observed counts.
More Properties of the Dissimilarity Index

- D is an estimate of the change, Δ, which measures the lack-of-fit of the model in the population.

When the model fits perfectly in the population,
- $\Delta = 0$
- D overestimates the lack-of-fit (especially for small samples).

For large samples when the model does not fit perfectly,
- G^2 and X^2 will be large.
- D reveals when the lack-of-fit is important in a practical sense.

Rule-of-thumb: $D < .03$ indicates non-important lack-of-fit.
Example of the Dissimilarity Index

Bluecollar Example: For the model \((MW, MS)\)

\[
D = \frac{55.2306}{2(715)} = .039
\]

We would need to move 3.9% percent of the observations to achieve a perfect fit of the model \((MW, MS)\) to observed (sample) data.

For the model \((MW, MS, SW)\),

\[
D = \frac{5.8888}{2(715)} = .004
\]

We would need to move .4% of the observations to achieve a perfect fit of the models \((MW, MS, SW)\) to the observed data.

Which one? Possibly the model of conditional independence.
A large value indicates that the observed and fitted are “close”.

Worker satisfaction example:

For the model of conditional independence \((MW, MS)\),

\[r = 0.9906 \]

and for the model of homogeneous association

\[r = 0.9999 \]
Information Criteria

- Indices (statistics) that weigh goodness-of-fit of model to data, complexity of the model, and in some cases sample size.
- Good way to choose among reasonable models.
- Does not require the models be nested.
- Akaike Information Criteria (AIC):

 \[AIC = -2 \log(L) + 2(\text{number of parameters}) \]

- Bayesian Information Criteria (BIC): References:

1998 or 1999 special issue of *Sociological Methodology & Research* on the BIC statistic.
The Bayesian Approach to Model Selection

Another way of making the trade-off between a simple parsimonious model (practical significance) and a more complex and closer to reality model (statistical significance), besides using just G^2 and df.

Suppose you are considering a model, say M_0, and you are comparing it to the saturated model, M_1.

Which model gives a better description of the main features of the reality as reflected in the data?

More precisely, which of M_0 and M_1 is more likely to be the “true” model?

Answer: posterior odds

$$B = \frac{P(M_0|X)}{P(M_1|X)}$$
The BIC statistic

Skipping many details....for large samples:

\[BIC = -2 \log B = G^2 - (df) \log N \]

where \(N \) = total number of observations.

If BIC is negative, accept \(M_o \); it’s preferable to the saturated model.

When comparing a set of models, choose the one with the smallest BIC value. (The models do not have to be nested). This procedure provides you with a consistent model in the sense that in large samples, it chooses the correct model with high probability.
Example of Information Criteria

Example: Worker Job Satisfaction \times Supervisor’s Job Satisfaction \times Quality of Management

\[N = 715 \]

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>(G^2)</th>
<th>p-value</th>
<th>BIC</th>
<th>Parameters</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MSW)</td>
<td>0</td>
<td>0.00</td>
<td>1.000</td>
<td>.00</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>(MS)(MW)(SW)</td>
<td>1</td>
<td>.06</td>
<td>.800</td>
<td>-6.51</td>
<td>7</td>
<td>-13.94</td>
</tr>
<tr>
<td>(MW)(SW)</td>
<td>2</td>
<td>71.90</td>
<td>.000</td>
<td>58.76</td>
<td>6</td>
<td>59.90</td>
</tr>
<tr>
<td>(MS)(WS)</td>
<td>2</td>
<td>19.71</td>
<td>.000</td>
<td>6.57</td>
<td>6</td>
<td>7.71</td>
</tr>
<tr>
<td>(SM)(WM)</td>
<td>2</td>
<td>5.39</td>
<td>.068</td>
<td>-7.75</td>
<td>6</td>
<td>-6.61</td>
</tr>
<tr>
<td>(MW)(S)</td>
<td>3</td>
<td>87.79</td>
<td>.000</td>
<td>68.07</td>
<td>5</td>
<td>77.79</td>
</tr>
<tr>
<td>(WS)(M)</td>
<td>3</td>
<td>102.11</td>
<td>.000</td>
<td>82.07</td>
<td>5</td>
<td>92.11</td>
</tr>
<tr>
<td>(MS)(W)</td>
<td>3</td>
<td>35.60</td>
<td>.000</td>
<td>15.88</td>
<td>5</td>
<td>25.60</td>
</tr>
<tr>
<td>(M)(S)(W)</td>
<td>4</td>
<td>118.00</td>
<td>.000</td>
<td>91.71</td>
<td>4</td>
<td>110.00</td>
</tr>
</tbody>
</table>
"Analysis of Association" Table

Another aid in helping to decide between practical and statistical significance. This comes from Leo Goodman’s toolbox.

This is useful even when the sampling distribution of G^2 is not well approximated by chi–squared distribution.

We use the G^2 from independence as a measure of the total association in the data and see how much association is accounted for by certain effects.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Models</th>
<th>Δdf</th>
<th>ΔG^2</th>
<th>p-value</th>
<th>%</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>(M,S,W) - (MS,W)</td>
<td>1</td>
<td>82.40</td>
<td>.000</td>
<td>69.8%</td>
<td>69.8%</td>
</tr>
<tr>
<td>MW</td>
<td>(MS,W) - (MS,MW)</td>
<td>1</td>
<td>30.21</td>
<td>.000</td>
<td>25.6%</td>
<td>95.4%</td>
</tr>
<tr>
<td>SW</td>
<td>(MS,MW) - (MS,MW,SW)</td>
<td>1</td>
<td>5.33</td>
<td>.021</td>
<td>4.6%</td>
<td>100.0%</td>
</tr>
<tr>
<td>MSW</td>
<td>(MS,MW,SW) - (MSW)</td>
<td>1</td>
<td>.06</td>
<td>.800</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>total</td>
<td>(M,S,W)</td>
<td>4</td>
<td>118.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“Analysis of Association” Table

<table>
<thead>
<tr>
<th>Effect</th>
<th>Models</th>
<th>(\Delta df)</th>
<th>(\Delta G^2)</th>
<th>(p)-value</th>
<th>%</th>
<th>Cummul. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>(M,S,W) - (MS,W)</td>
<td>1</td>
<td>82.40</td>
<td>.000</td>
<td>69.8%</td>
<td>69.8%</td>
</tr>
<tr>
<td>MW</td>
<td>(MS,W) - (MS,MW)</td>
<td>1</td>
<td>30.21</td>
<td>.000</td>
<td>25.6%</td>
<td>95.4%</td>
</tr>
<tr>
<td>SW</td>
<td>(MS,MW) - (MS,MW,SW)</td>
<td>1</td>
<td>5.33</td>
<td>.021</td>
<td>4.6%</td>
<td>100.0%</td>
</tr>
<tr>
<td>MSW</td>
<td>(MS,MW,SW) - (MSW)</td>
<td>1</td>
<td>.06</td>
<td>.800</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>total</td>
<td>(M,S,W)</td>
<td>4</td>
<td>118.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(\Delta G^2 \) = the difference between goodness-of-fit statistics for the models indicated.
- \(\Delta df \) = the corresponding difference between the models’ df.
- The column labeled “\(p \)-value” really shouldn’t be in this table.
- Percent = \(\Delta G^2 / 118.00 \). Note: 118.00 is the \(G^2 \) from (M,S,W).
- Cumulative percent = sum of “Percent” of current and all rows above the current one.
Log-linear Models for 4+–Way Tables

They are basically the same as models for 3–way tables, but just more complex. They can have many more 2– and 3–way associations, as well as higher–way associations.

Example: These data come from a study by Thornes & Collard (1979), described by Gilbert (1981), and analyzed by others (including Agresti, 1990; Meulman & Heiser, 1996).

A sample of men and woman who filed for petition for divorce (they weren’t married to each other), and a similar sample of married people were asked

- “Before you were married to your (former) husband/wife, had you ever made love to anyone else?”
- “During your (former) marriage, (did you have) have you had any affairs or tried sexual encounters with another man/woman?”
Example of 4–Way Table

These data form a 4–way, $2 \times 2 \times 2 \times 2$ table with variables

- **G** for gender
- **E or EMS** for whether reported extramarital sex.
- **P or PMS** for whether reported premarital sex.
- **M** for marital status.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Women</th>
<th></th>
<th></th>
<th>Men</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Martial Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divorce</td>
<td>17</td>
<td>54</td>
<td>36</td>
<td>214</td>
<td>28</td>
<td>60</td>
</tr>
<tr>
<td>Still Married</td>
<td>4</td>
<td>25</td>
<td>4</td>
<td>322</td>
<td>11</td>
<td>42</td>
</tr>
</tbody>
</table>

For these data, a good model (perhaps the best) is $(G P, M E P)$

$$G^2 = 8.15 \quad df = 6 \quad p = .23$$

(we’ll talk about how we arrived at this model later).
Parameter Estimates for example

Estimated Parameters for the highest–way associations in the model (from *SAS/GENMOD*)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>df</th>
<th>Estimate</th>
<th>ASE</th>
<th>Wald</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG yes women</td>
<td>1</td>
<td>-1.3106</td>
<td>.1530</td>
<td>73.4249</td>
<td>< .001</td>
</tr>
<tr>
<td>PG yes men</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG no women</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG no men</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEP div yes yes</td>
<td>1</td>
<td>-1.7955</td>
<td>.5121</td>
<td>12.2948</td>
<td>< .001</td>
</tr>
<tr>
<td>MEP div yes no</td>
<td>1</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEP div no yes</td>
<td>1</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEP div no no</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEP mar yes yes</td>
<td>1</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEP mar yes no</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEP mar no no</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEP mar no no</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interpretation of GP Partial Association

Since $\lambda_{\text{women, yes}}^{GP} = -1.3106$, given EMS and marital status the odds of PMS for women is

$$e^{-1.3106} = 0.2696$$

times the odds for men.

Alternatively, given EMS and marital status, the odds of PMS for men is

$$e^{1.3106} = 1/0.2696 = 3.71$$

times larger than the odds for women.
Using the Fitted Values

...from the \((GP, MEP)\) model...

<table>
<thead>
<tr>
<th>Gender</th>
<th>PMS:</th>
<th>EMS:</th>
<th>Women</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Men</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Divorced</td>
<td>18.67</td>
<td>47.30</td>
<td>38.40</td>
<td>204.32</td>
<td>26.33</td>
<td>66.70</td>
<td>14.60</td>
<td>77.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>6.22</td>
<td>27.80</td>
<td>5.80</td>
<td>327.49</td>
<td>8.78</td>
<td>39.20</td>
<td>2.20</td>
<td>124.51</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For EMS=yes and marital status=divorced

\[
\frac{\text{odds(PMS for woman)}}{\text{odds(PMS for man)}} = \frac{(18.67)(14.60)}{(38.40)(26.33)} = .2696
\]

or for EMS=yes and marital status=married

\[
\frac{\text{odds(PMS for woman)}}{\text{odds(PMS for man)}} = \frac{(6.22)(2.20)}{(5.80)(8.78)} = .2696
\]

which also equals the value if we use EMS=no.
Martial–PMS–EMS partial association

Can use either our estimated parameters or using fitted values. Fitted values from the \((GP, MEP)\) model

<table>
<thead>
<tr>
<th></th>
<th>Women</th>
<th></th>
<th>Men</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PMS: Yes</td>
<td>No</td>
<td>PMS: Yes</td>
<td>No</td>
</tr>
<tr>
<td>EMS: Yes</td>
<td>18.67</td>
<td>47.30</td>
<td>26.33</td>
<td>66.70</td>
</tr>
<tr>
<td></td>
<td>38.40</td>
<td>204.32</td>
<td>14.60</td>
<td>77.68</td>
</tr>
<tr>
<td>EMS: No</td>
<td>6.22</td>
<td>27.80</td>
<td>8.78</td>
<td>39.20</td>
</tr>
<tr>
<td></td>
<td>5.80</td>
<td>327.49</td>
<td>2.20</td>
<td>124.51</td>
</tr>
</tbody>
</table>

The odds ratio for marital status and extramarital sex for those who did and those who did not have premarital sex.

PMS=Yes: Of those who had premarital sex, the odds of divorce given the person had extramarital sex is

\[
\hat{\theta}_{ME|PMS=\text{yes}} = \frac{(18.67)(27.80)}{(6.22)(47.30)} = 1.76
\]

times larger than the odds of divorce given the person did not have extramarital sex.

Note: We could also use the fitted values for men

\[
\hat{\theta}_{ME|PMS=\text{yes}} = \frac{(26.33)(39.20)}{(8.78)(66.70)} = 1.76
\]
Martial–PMS–EMS partial association

PMS=no Of those who did not have premarital sex, the odds of divorce given the person had extramarital sex is

\[\hat{\theta}_{ME|PMS=no} = \frac{(38.40)(327.49)}{(5.50)(204.32)} = 10.62 \]

times larger than the odds of divorce given the person did not have extramarital sex.

3–way EMP association: The partial odds ratio for marital status and extramarital sex given the person did not have premarital sex are

\[\frac{10.62}{1.76} = 6.03 \]

times larger than the partial odds ratio given the person did have premarital sex.

(We could have arrived at the same interpretation of the partial associations by using the parameters of the log-linear model.)
What do the odds ratios equal in terms of the model parameters?

Let i index M (marital status), j index EMS, k index PMS, and l index Gender,

\[
\log \left(\frac{\mu_{11kl}\mu_{22kl}}{\mu_{12kl}\mu_{21kl}} \right) = \log(\mu_{11kl}) + \log(\mu_{22kl}) - \log(\mu_{12kl}) - \log(\mu_{21kl})
\]

\[
= \lambda_{11}^{ME} + \lambda_{22}^{ME} - \lambda_{12}^{ME} - \lambda_{21}^{ME} \\
+ \lambda_{11k}^{M EP} + \lambda_{22k}^{M EP} - \lambda_{12k}^{M EP} - \lambda_{21k}^{M EP}
\]

\[\hat{\lambda}_{11}^{ME} = 2.3960\] (Divorced and had EMS),
all other \(\hat{\lambda}_{ij}^{ME}\)'s equal zero.

\[\hat{\lambda}_{111}^{M EP} = -1.7955\] (Divorced, had EMS & had PMS),
all other \(\hat{\lambda}_{ijk}^{ME}\)'s equal zero.
Of those who had PMS ($k = 1 = \text{yes}$), the estimated odds ratio for marital status and extramarital sex equals
\[
\exp(2.3626 - 1.7955) = \exp(0.5671) = 1.76 \quad (95\% CI: 0.33, 9.21)
\]

Of those who did not have PMS ($k = 2 = \text{no}$), the estimated odds ratio for marital status and extramarital sex equals
\[
\exp(2.3626) = 10.62
\]

and the ratio of the odds ratios equals
\[
\exp(2.3626 - 0.5671) = \exp(1.7955) = 6.03 \quad \text{or} \quad \exp(-1.7955) = 1/6.03 \\
(95\% CI: 7.92, 14.24)
\]

Before summarizing the findings, how to compute CIs for these odds ratios...
\[(1 - \alpha) \times 100\% \text{ CI for MEP Partial association}\]

Of those who had PMS \((k = 1 = \text{yes})\), the estimated odds ratio for marital status and extramarital sex equals

\[\exp(\hat{\lambda}_{11}^{ME} - \hat{\lambda}_{111}^{MEP}) = \exp(2.3626 - 1.7955) = \exp(0.5671) = 1.76\]

Need the variances and covariance of parameters:

\[
\Sigma = \begin{pmatrix}
\sigma_{ME}^2 & \sigma_{ME,MEP} \\
\sigma_{ME,MEP} & \sigma_{MEP}^2
\end{pmatrix} = \begin{pmatrix}
0.14962 & -0.14962 \\
-0.14962 & 0.2622
\end{pmatrix}
\]

\[\text{se}(\hat{\lambda}_{11}^{ME} - \hat{\lambda}_{111}^{MEP}) = \sqrt{\sigma_{ME}^2 + \sigma_{MEP}^2 - 2\sigma_{ME,MEP}}\]

\[= \sqrt{0.14962 + 0.2622 - 2(-0.14962)} = 0.84323 \text{ So a}\]

\[(1 - \alpha) \times 100\% \text{ CI for the log of the MEP partial for those who had PMS is}\]

\[1.76 \pm 1.96(0.84323) \rightarrow .5671 \pm 1.6527 \rightarrow (-1.0856, 2.2198)\]

and for the MEP partial association for those who had PMS

\[(\exp(-1.0856), \exp(2.2198)) \rightarrow (0.33, 9.21)\]
Logit–Log-linear Model Connection

Log-linear models:

- All variables are considered response variables; no distinction is made between response and explanatory variables (in terms of a variable’s role/treatment in an analysis).
- Distribution = Poisson.
- Link = Log.

Logit Models:

- Represent how a binary response variable depends (or is related to) a set of explanatory variables.
- Distribution = Binomial.
- Link = Logit.
Logit and log-linear models are related

Logit models are equivalent to certain log-linear model.

Log-linear models are more general than logit models.

More specifically,

1. For a log-linear model, you can construct logits for 1 (binary) response variable to help interpret the log-linear model.

2. Logit models with categorical explanatory variables have equivalent log-linear models.

The relationship is useful... use Logit models to interpret log-linear models
Using Logit models to interpret log-linear models

For 2–way tables:

Interpret log-linear models by looking at differences between λ’s, which equal log of odds and functions of λ’s equal odds ratios.

For 3–way tables: The blue collar worker data and the homogeneous association model \((MW, MS, SW)\),

\[
\log \mu_{ijk} = \lambda + \lambda_i^M + \lambda_j^S + \lambda_k^W + \lambda_{iSj}^M + \lambda_{iWk}^S + \lambda_{SWjk}^W
\]

If we focus on worker’s job satisfaction, then we consider

\[
\pi_{ij} = \text{Prob}(\text{Hi worker satisfaction}|M = i, S = j)
\]

and the logit model for worker job satisfaction is

\[
\text{logit}(\pi_{ij}) = \log \left(\frac{P(\text{Hi worker satisfaction}|M = i, S = j)}{P(\text{Lo worker satisfaction}|M = i, S = j)} \right)
\]

\[
= \log \left(\frac{\mu_{ij2}}{\mu_{ij1}} \right)
\]

\[
= \log(\mu_{ij2}) - \log(\mu_{ij1})
\]
Using Logit models to interpret loglinear models

For 3–way tables (continued):

\[
\text{logit}(\pi_{ij}) = (\lambda_2^W - \lambda_1^W) + (\lambda_{i2}^MW - \lambda_{i1}^MW) + (\lambda_{j2}^SW - \lambda_{j1}^SW)
\]

\[= \alpha + \beta_i^M + \beta_j^S\]

This is the additive effects logit model where

- \(\alpha = (\lambda_2^W - \lambda_1^W)\). a constant.
- \(\beta_i^M = (\lambda_{i2}^MW - \lambda_{i1}^MW)\).

The relationship (effect) of management quality between (on) worker job satisfaction is the same at each level of supervisor’s job satisfaction.

- \(\beta_j^S = (\lambda_{j2}^SW - \lambda_{j1}^SW)\).

The relationship (effect) of supervisor’s job satisfaction between (on) worker job satisfaction is the same at each level of management quality.
Example of 4-way Table

Marital status \times EMS \times PMS \times Gender — A good model for these data is (GP, MEP).

We can use a logit model formulation to help interpret the results of the (GP, MEP) log-linear model,

$$
\log \mu_{ijkl} = \lambda + \lambda_i^M + \lambda_j^E + \lambda_k^P + \lambda_l^G + \lambda_{ij}^{ME} + \lambda_{ik}^{MP} + \lambda_{jk}^{EP} + \lambda_{kl}^{GP} + \lambda_{ijkl}^{MEP}
$$

We will focus on marital status and form (log) odds of divorce,

$$
\log(\frac{\pi_{1ijkl}}{\pi_{2ijkl}}) = \log(\pi_{1ijkl}) - \log(\pi_{2ijkl})
$$

$$
= (\lambda_1^M - \lambda_2^M) + (\lambda_{1j}^{ME} - \lambda_{2j}^{ME}) + (\lambda_{1k}^{MP} - \lambda_{2k}^{MP}) + (\lambda_{1jk}^{MEP} - \lambda_{2jk}^{MEP})
$$

$$
= \alpha + \beta_j^E + \beta_k^P + \beta_{jk}^{EP}
$$

and the estimated parameters for the logit model using the ones from the log-linear model...
Marital status × EMS × PMS × Gender

Loglinear Model Parameters

<table>
<thead>
<tr>
<th>Marital Status</th>
<th>Divorced</th>
<th>Married</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\lambda}_1^M = -0.4718$</td>
<td>$\hat{\lambda}_2^M = 0.00$</td>
<td>$\hat{\alpha} = -0.4718$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>$\hat{\lambda}_{11}^{ME} = 2.3626$</td>
<td>$\hat{\lambda}_{21}^{ME} = 0.0000$</td>
<td>$\hat{\beta}_1^E = 2.3626$</td>
</tr>
<tr>
<td>no</td>
<td>$\hat{\lambda}_{12}^{ME} = 0.0000$</td>
<td>$\hat{\lambda}_{22}^{ME} = 0.0000$</td>
<td>$\hat{\beta}_2^E = 0.0000$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PMS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>$\hat{\lambda}_{11}^{MP} = 1.0033$</td>
<td>$\hat{\lambda}_{21}^{MP} = 0.0000$</td>
<td>$\hat{\beta}_1^P = 1.0033$</td>
</tr>
<tr>
<td>no</td>
<td>$\hat{\lambda}_{12}^{MP} = 0.0000$</td>
<td>$\hat{\lambda}_{22}^{MP} = 0.0000$</td>
<td>$\hat{\beta}_2^P = 0.0000$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMS</th>
<th>PMS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>$\hat{\lambda}_{111}^{MEP} = -1.796$</td>
<td>$\hat{\lambda}_{211}^{MEP} = 0.0000$</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
<td>$\hat{\lambda}_{112}^{MEP} = 0.0000$</td>
<td>$\hat{\lambda}_{212}^{MEP} = 0.0000$</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>$\hat{\lambda}_{121}^{MEP} = 0.0000$</td>
<td>$\hat{\lambda}_{221}^{MEP} = 0.0000$</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>$\hat{\lambda}_{122}^{MEP} = 0.0000$</td>
<td>$\hat{\lambda}_{222}^{MEP} = 0.0000$</td>
</tr>
</tbody>
</table>
Marital status seems like a response/outcome variable, while the others seem to be more explanatory/predictor variables.

So rather than fitting a log-linear model, we could treat the data as if we have independent Binomial samples, and fit a logit model where the (binary) response variable is marital status and the explanatory variables are Gender, EMS, and PMS.

<table>
<thead>
<tr>
<th>Gender</th>
<th>PMS</th>
<th>EMS</th>
<th>Divorced</th>
<th>Married</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>yes</td>
<td>yes</td>
<td>17</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no</td>
<td>54</td>
<td>25</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
<td>36</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td></td>
<td>214</td>
<td>322</td>
<td>536</td>
</tr>
<tr>
<td>Men</td>
<td>yes</td>
<td>yes</td>
<td>28</td>
<td>11</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no</td>
<td>60</td>
<td>42</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>yes</td>
<td>17</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td></td>
<td>68</td>
<td>130</td>
<td>198</td>
</tr>
</tbody>
</table>
Loglinear–Logit Model Equivalence (continued)

The saturated logit model for these data

\[
\log \frac{P(\text{divorced}_{ijk})}{P(\text{married}_{ijk})} = \alpha + \beta_i^G + \beta_j^E + \beta_k^P + \beta_{ij}^{GE} + \beta_{ik}^{GP} + \beta_{jk}^{EP} + \beta_{ijk}^{GEP}
\]

<table>
<thead>
<tr>
<th>Logit Model</th>
<th>df</th>
<th>(G^2)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E,G,P</td>
<td>4</td>
<td>13.63</td>
<td>.001</td>
</tr>
<tr>
<td>GP,E</td>
<td>3</td>
<td>13.00</td>
<td>< .001</td>
</tr>
<tr>
<td>EG,P</td>
<td>3</td>
<td>10.75</td>
<td>.010</td>
</tr>
<tr>
<td>EP,G</td>
<td>3</td>
<td>.70</td>
<td>.873</td>
</tr>
<tr>
<td>EG,GP</td>
<td>2</td>
<td>10.33</td>
<td>< .001</td>
</tr>
<tr>
<td>EP,GP</td>
<td>2</td>
<td>.44</td>
<td>.803</td>
</tr>
<tr>
<td>EG,EP</td>
<td>2</td>
<td>.29</td>
<td>.865</td>
</tr>
<tr>
<td>EG,EP,GP</td>
<td>1</td>
<td>.15</td>
<td>.700</td>
</tr>
<tr>
<td>EGP</td>
<td>0</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
The “best” logit model is \((EP, G)\)

\[
\logit(\pi_{ijk}) = \alpha + \beta_i^G + \beta_j^E + \beta_k^P + \beta_{jk}^{EP}
\]

which is different from the logit model that we used to interpret our log-linear model \((GP, EMP)\), i.e.,

\[
\logit(\pi_{ijk}) = \alpha + \beta_j^E + \beta_k^P + \beta_{jk}^{EP}
\]

The \((GP, EMP)\) log-linear model is not equivalent to any logit model that we could fit to the data with marital status as the response variable because...

- When we consider the data as 8 independent Binomial samples, the “row” margin corresponding to the total number of observations for each Gender \(\times\) EMS \(\times\) PMS combination is “fixed.”
- When we fit a log-linear model to the data, we should always include parameters to ensure that the GEP margin is fit perfectly.
- If marital status is our response variable, we are not interested in the relationship between/among Gender, EMS, and PMS, except with respect to how they are related to marital status.
The log-linear equivalent to \((G, EP)\) logit

\[
\text{logit}(\pi_{ijk}) = \alpha + \beta_i^G + \beta_j^E + \beta_k^P + \beta_{jk}^{EP}
\]
is the \((GEP, MEP, GM)\) log-linear model,

\[
\mu_{ijkl} = \lambda + \lambda_i^G + \lambda_j^E + \lambda_k^P + \lambda_{ij}^{GE} + \lambda_{ik}^{GP} + \lambda_{jk}^{EP} + \lambda_{ijk}^{GEP} + \lambda_{ijkl}^M + \lambda_{il}^{GM} + \lambda_{jl}^{EM} + \lambda_{kl}^{PM} + \lambda_{ijk}^{MEP}
\]

- When odds are computed for marital status using a log-linear model with \(\lambda_{ijk}^{GEP}\), all terms associated with this association and lower order terms drop out; that is,

\[
\lambda, \lambda_i^G, \lambda_j^E, \lambda_k^P, \lambda_{ij}^{GE}, \lambda_{ik}^{GP}, \lambda_{jk}^{EP}, \lambda_{ijk}^{GEP}
\]

- The log-linear model \((GEP, MEP, GM)\) will have the exact same \(df\) and fit statistics as the \((EP, G)\) logit model.

- The estimated parameters of the logit model are equal to differences of estimated log-linear model parameters.
The log-linear/logit equivalents

For all the logit models that we fit to these data, here are the corresponding loglinear models:

<table>
<thead>
<tr>
<th>Logit Model</th>
<th>Loglinear Model</th>
<th>df</th>
<th>G^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>E,G,P</td>
<td>EGP,ME,MG,MP</td>
<td>4</td>
<td>13.63</td>
<td>.001</td>
</tr>
<tr>
<td>GP,E</td>
<td>EGP,MGP,ME</td>
<td>3</td>
<td>13.00</td>
<td>< .001</td>
</tr>
<tr>
<td>EG,P</td>
<td>EGP,MEG,MP</td>
<td>3</td>
<td>10.75</td>
<td>.010</td>
</tr>
<tr>
<td>EP,G</td>
<td>EGP,MEP,MG</td>
<td>3</td>
<td>.70</td>
<td>.873</td>
</tr>
<tr>
<td>EG,GP</td>
<td>EGP,MEG,MGP</td>
<td>2</td>
<td>10.33</td>
<td>< .001</td>
</tr>
<tr>
<td>EP,GP</td>
<td>EGP,MEP,MGP</td>
<td>2</td>
<td>.44</td>
<td>.803</td>
</tr>
<tr>
<td>EG,EP</td>
<td>EGP,MEG,MEP</td>
<td>2</td>
<td>.29</td>
<td>.865</td>
</tr>
<tr>
<td>EG,EP,GP</td>
<td>EGP,MEG,MEP,MGP</td>
<td>1</td>
<td>.15</td>
<td>.700</td>
</tr>
<tr>
<td>EGP</td>
<td>EGPM</td>
<td>0</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Strategies in (Log-linear) Model Selection

First, when to use logit models and when to use log-linear models.

When one variable is a response variable and the rest are explanatory variables, you can use either logit models or log-linear models; however, the logit models are easier (better) to use.

The logit models can be fit directly and are advantageous in this situation in that the logit model is simpler; that is, the logit model formulations have fewer parameters than the equivalent log-linear model.

If the response variable has more than 2 levels, you can use a multicategory logit model (to be covered in a later lecture).

If you use log-linear models, the highest–way associations among the explanatory variables should be included in all models.

Whether you use logit or log-linear formulations, the results will be the same regardless of which formulation you use.
Two or Model Response Variables

... Then the log-linear model should be used.

Log-linear models are more general than logit models.

In the Marital status × Gender × EMS × PMS example, with the log-linear models we can examine not only how marital status is related to EMS, PMS and gender, but we can also examine associations between (for example) gender and EMS or PMS.

There classes are multivariate logit models:

- “Standard” type (see McCullah & Nelder)
- IRT models are multivariate logit models.
- Other kinds (see Anderson & Böckenholt, 2000; Anderson & Yu, 2007).
Model selection strategies with Log-linear models

The more variables, the more possible models that exist.

We’ll talk about strategies for more of an exploratory study here and later we’ll talk more specifically about strategies for hypothesis/substantive theory guided studies (i.e., association graphs).

■ (1.) Determine whether some variables are responses and others are explanatory variables.
 ◆ Terms for associations among the explanatory variables should always be included in the model.
 ◆ Focus your model search on models that relate the responses to explanatory variables.

■ (2.) If a margin is fixed by design, then a term corresponding to that margin should always be included in the log-linear model (to ensure that the marginal fitted values from the model equal to observed margin). This reduces the set of models that need to be considered.
(3.) Try to determine the level of complexity that is necessary by fitting models with

- marginal/main effects only.
- all 2–way associations.
- all 3–way associations.
- all highest–way associations.

You can use a backward elimination strategy (analogous to one we discussed for logit models) or a stepwise procedure (but don’t use computer algorithms for doing this).

Example of backward elimination and as promised how it was decided that \((E, G, P)\) was a good log-linear model for the EMS × PMS × Gender × Marital Status data...
Backward Elimination

<table>
<thead>
<tr>
<th>Stage</th>
<th>Model</th>
<th>G^2</th>
<th>df</th>
<th>Best Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>(EMP, EGM, EGP, GMP)</td>
<td>0.15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(EMP, EGM, GMP)</td>
<td>0.19</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>(EMP, EGM, EGP)</td>
<td>0.29</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(EMP, EGP, GMP)</td>
<td>0.44</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(EGM, EGP, GMP)</td>
<td>10.33</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(GP, EMP, EGM)</td>
<td>0.37</td>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>(EG, EMP, GMP)</td>
<td>0.46</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(EP, EGM, GMP)</td>
<td>10.47</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(EG, GM, GP, EMP)</td>
<td>0.76</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>(EP, GP, MP, EGM)</td>
<td>10.80</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(EMP, EGM)</td>
<td>67.72</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(GM, GP, EMP)</td>
<td>5.21</td>
<td>5</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>(EG, GP, EMP)</td>
<td>5.25</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(EG, GM, EMP)</td>
<td>70.10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(GP, EMP)</td>
<td>8.15</td>
<td>6</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>(GM, GP, EM, EP, MP)</td>
<td>18.13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(GM, EMP)</td>
<td>83.38</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(GP, EM, EP, MP)</td>
<td>21.07</td>
<td>7</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>(G, EMP)</td>
<td>83.41</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

(from Agresti, 1990).