
(a) Graphics: For the univariate distributions here are stem-n-leaf and boxplot. Alternatively you could have included histogram or dot diagram.

Sales:

<table>
<thead>
<tr>
<th>Stem</th>
<th>Leaf</th>
<th>#</th>
<th>Boxplot</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>679</td>
<td>3</td>
<td>+-------+</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>57</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>2</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>679</td>
<td>3</td>
<td>+-------+</td>
</tr>
</tbody>
</table>

---+---+---+---+

Comment: The sales distribution is “disjoint” and a bit U-shaped.

Profits:

<table>
<thead>
<tr>
<th>Stem</th>
<th>Leaf</th>
<th>#</th>
<th>Boxplot</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>60</td>
<td>2</td>
<td>+------+</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>2</td>
<td>-------</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>91</td>
<td>2</td>
<td>+------+</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

---+---+---+---+

Comment: The distribution of profits is pretty spread out, possibly uni-modal.

Scatter Plot: Sales by Profits
Comment: There appears to be a positive linear relationship between sales and profits.

(b) Descriptive statistics: These are all in billions of dollars.

<table>
<thead>
<tr>
<th>Sales</th>
<th>Profits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{x}_1 = 155.60$</td>
<td>$\bar{x}_2 = 14.70$</td>
</tr>
<tr>
<td>$s_{11} = 7476.45$</td>
<td>$s_{22} = 26.19$</td>
</tr>
<tr>
<td>$s_{12} = 303.62$</td>
<td>$r_{12} = .69$</td>
</tr>
</tbody>
</table>

Interpretation of r_{12}: $r_{12} = .69$ indicates that sales and profits are “moderately” linearly related. This confirms what we saw in the scatter plot from part (a).

“moderately” is my subjective impression/interpretation of the size of the correlation.

2. Vectors: lengths, angles and projections.

Let $x' = [6, 1, 3]$, $y' = [-1, 2, 1]$ and $z' = [1, 1, 1]$.

(a) Lengths of vectors:
 Length of $x = 6.78233$
 Length of $y = 2.4494897$
 Length of $z = 1.7320508$

(b) The angle between
 x and z is 31.65°.
 x and y is 93.45°.
 y and z is 61.87°.
(c) Projections of \(\mathbf{x} \) and \(\mathbf{y} \) onto \(\mathbf{z} \):

Projection of \(\mathbf{x} \) onto \(\mathbf{z} \) = \[
\begin{bmatrix}
3.33 \\
3.33 \\
3.33
\end{bmatrix}
\]

Projection of \(\mathbf{y} \) onto \(\mathbf{z} \) = \[
\begin{bmatrix}
0.67 \\
0.67 \\
0.67
\end{bmatrix}
\]

(d) Projection of

\[
\mathbf{x} \text{ on } \mathbf{y} = \begin{bmatrix} 0.167 \\ -0.333 \\ -0.167 \end{bmatrix}
\]

\[
\mathbf{y} \text{ on } \mathbf{x} = \begin{bmatrix} -0.130 \\ -0.022 \\ -0.065 \end{bmatrix}
\]

The projection of \(\mathbf{x} \) on \(\mathbf{y} \) and the projection of \(\mathbf{y} \) and \(\mathbf{x} \) are not the same because the direction of \(\mathbf{y} \) (which is the direction of the projection of \(\mathbf{x} \) on \(\mathbf{y} \)) is not the same as the direction of \(\mathbf{x} \) (which is the direction of \(\mathbf{y} \) on \(\mathbf{y} \)).

3. Various vector and matrix operations.

(a) \(\mathbf{1}' \mathbf{A} = (5, 3, 7) \)

(b) It is not possible to compute \(\mathbf{1A} \), because the matrices do not conform; that is, \(\mathbf{1} \) is \((3 \times 1)\) and \(\mathbf{A} \) is \((3 \times 3)\). The number of columns of \(\mathbf{1} \) are not equal to the number of rows of \(\mathbf{A} \).

(c) \(\mathbf{A1} = (11, -1, 5) \)

(d) Not possible (matrices do not conform); that is, \(\mathbf{A} \) is \((3 \times 3)\) and \(\mathbf{1}' \) is \((1 \times 3)\). The number of columns of \(\mathbf{A}_{3 \times 3} \) are not equal to the number of rows of \(\mathbf{1}_3 \).

(e) \[
2\mathbf{A} = \begin{bmatrix}
12 & 2 & 8 \\
-4 & 0 & 2 \\
2 & 4 & 4
\end{bmatrix}
\]

(f) \[
\mathbf{A} + \mathbf{B} = \begin{bmatrix}
8 & 1 & 6 \\
-5 & 1 & 2 \\
3 & -2 & 3
\end{bmatrix}
\]
(g)

$$2A - 3B = \begin{pmatrix} 6 & 2 & 2 \\ 5 & -3 & -1 \\ -4 & 16 & 1 \end{pmatrix}$$

(h) \((2A)' - (3B)'\) is the same as part (g) but transposed; that is,

$$\begin{pmatrix} 6 & 5 & -4 \\ 2 & -3 & 16 \\ 2 & -1 & 1 \end{pmatrix}$$

(i)

$$AB = \begin{pmatrix} 17 & -15 & 17 \\ -2 & -4 & -3 \\ 0 & -6 & 6 \end{pmatrix}$$

(j)

$$BA = \begin{pmatrix} 14 & 6 & 12 \\ -19 & -1 & -9 \\ 21 & 4 & 6 \end{pmatrix}$$

which is not the same are \(AB\) from part (i). They’re the same order but they

are not equal.

(k)

$$A'B' = \begin{pmatrix} 14 & -19 & 21 \\ 6 & -1 & 4 \\ 12 & -9 & 6 \end{pmatrix}$$

(l)

\((BA)' = A'B'\) as they should; that is, the matrices from parts (i) and (k) are

equal.

(m)

$$CB = \begin{pmatrix} 8 & 0 & 8 \\ -9 & 3 & 3 \\ 2 & -4 & 1 \end{pmatrix}$$
(n) \[BC = \begin{pmatrix} 8 & 0 & 2 \\ -12 & 3 & 1 \\ 8 & -12 & 1 \end{pmatrix} \]

The matrices \(CB \neq BC \) because (in general) order in matrix multiplication matters. However note that the diagonals are the same. This results because matrix \(C \) is a diagonal.

In \(CB \), the rows of \(B \) are multiplied by the corresponding diagonals of \(C \). In \(BC \), the columns of \(B \) are multiplied by the corresponding diagonals of \(C \).

4. If \(A = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \), \(B = \begin{pmatrix} -2 & 1 \\ 0 & 4 \end{pmatrix} \), and \(C = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \) verify that

(a) \((A + B) + C = A + (B + C) \)

\[(A + B) + C = \begin{pmatrix} 0 & 5 \\ 1 & 7 \end{pmatrix} + \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 3 & 8 \end{pmatrix} \]

and

\[A + (B + C) = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 3 & 8 \end{pmatrix} \]

(b) \((AB)C = A(BC) \)

\[(AB)C = \begin{pmatrix} -4 & 18 \\ -2 & 13 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 24 & 14 \\ 20 & 11 \end{pmatrix} \]

and

\[A(BC) = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -4 & -1 \\ 8 & 4 \end{pmatrix} = \begin{pmatrix} 24 & 14 \\ 20 & 11 \end{pmatrix} \]

(c) \(A(B + C) = AB + AC \)

\[A(B + C) = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 10 & 24 \\ 7 & 17 \end{pmatrix} \]

and

\[AB + AC = \begin{pmatrix} -4 & 18 \\ -2 & 13 \end{pmatrix} + \begin{pmatrix} 14 & 6 \\ 9 & 4 \end{pmatrix} = \begin{pmatrix} 10 & 24 \\ 7 & 17 \end{pmatrix} \]