Chi-Square & F Distributions

Carolyn J. Anderson

EdPsych 580

Fall 2005
Chi-Square & \mathcal{F} Distributions

... and Inferences about Variances

- The Chi-square Distribution
 - Definition, properties, tables of, density calculator
 - Testing hypotheses about the variance of a single population
 (i.e., $H_0 : \sigma^2 = K$). Example.

- The \mathcal{F} Distribution
 - Definition, important properties, tables of
 - Testing the equality of variances of two independent populations
 (i.e., $H_0 : \sigma_1^2 = \sigma_2^2$). Example.
Chi-Square & F Distributions

...and Inferences about Variances

- Comments regarding testing the homogeneity of variance assumption of the two independent groups t–test (and ANOVA).
- Relationship among the Normal, t, χ^2, and F distributions.
Chi-Square & F Distributions

- **Motivation.** The normal and t distributions are useful for tests of population means, but often we may want to make inferences about population variances.

- **Examples:**
 - Does the variance equal a particular value?
 - Does the variance in one population equal the variance in another population?
 - Are individual differences greater in one population than another population?
 - Are the variances in J populations all the same?
 - Is the assumption of homogeneous variances reasonable when doing a t-test (or ANOVA) of two...
Chi-Square & \mathcal{F} Distributions

- To make statistical inferences about populations variance(s), we need
 - $\chi^2 \rightarrow$ The Chi-square distribution (Greek “chi”).
 - $\mathcal{F} \rightarrow$ Named after Sir Ronald Fisher who developed the main applications of \mathcal{F}.

- The χ^2 and \mathcal{F}–distributions are used for many problems in addition to the ones listed above.

- They provide good approximations to a large class of sampling distributions that are not easily determined.
The Big Five Theoretical Distributions

- The Big Five are Normal, Student’s t, χ^2, F, and the Binomial (π, n).

- Plan:
 - Introduce χ^2 and then the F distributions.
 - Illustrate their uses for testing variances.
 - Summarize and describe the relationship among the Normal, Student’s t, χ^2 and F.
The Chi-Square Distributions

- Suppose we have a population with scores Y that are normally distributed with mean $E(Y) = \mu$ and variance $\text{var}(Y) = \sigma^2$ (i.e., $Y \sim \mathcal{N}(\mu, \sigma^2)$).

- If we repeatedly take samples of size $n = 1$ and for each “sample” compute

 \[z^2 = \frac{(Y - \mu)^2}{\sigma^2} \]

 squared standard score

- Define $\chi^2_1 = z^2$

- What would the sampling distribution of χ^2_1 look like?
The Chi-Square Distribution, $\nu = 1$

Standard Normal Distribution

Chi-Square Distribution, $\nu = 1$

Value of Z

Value of X^2
The Chi-Square Distribution, $\nu = 1$

- χ_1^2 are non-negative Real numbers
- Since 68% of values from $\mathcal{N}(0, 1)$ fall between -1 to 1, 68% of values from χ_1^2 distribution must be between 0 and 1.
- The chi-square distribution with $\nu = 1$ is very skewed.
The Chi-Square Distribution, $\nu = 2$

- Repeatedly draw independent (random) samples of $n = 2$ from $\mathcal{N}(\mu, \sigma^2)$.
- Compute $Z_1^2 = (X_1 - \mu)^2 / \sigma^2$ and $Z_2^2 = (X_2 - \mu)^2 / \sigma^2$.
- Compute the sum: $\chi^2_2 = Z_1^2 + Z_2^2$.

![Chi-Square Distribution Graph](image)
The Chi-Square Distribution, $\nu = 2$

- All value non-negative
- A little less skewed than χ^2_1.
- The probability that χ^2_2 falls in the range of 0 to 1 is smaller relative to that for χ^2_1...

\[
P(\chi^2_1 \leq 1) = .68
\]
\[
P(\chi^2_2 \leq 1) = .39
\]

- Note that mean $\approx \nu = 2$....
Chi-Square Distributions

- **Generalize:** For n independent observations from a $\mathcal{N}(\mu, \sigma^2)$, the sum of the squared standard scores has a Chi-square distribution with n degrees of freedom.

- Chi–squared distribution only depends on degrees of freedom, which in turn depends on sample size n.

- The standard scores are computed using population μ and σ^2; however, we usually don’t know what μ and σ^2 equal. When μ and σ^2 are estimated from the sampled data, the degrees of freedom are less than n.
Chi-Square Dist: Varying ν

Chi-Square Distributions

Value of X^2 vs. Density
Properties of Family of χ^2 Distributions

• They are all positively skewed.

• As ν gets larger, the degree of skew decreases.

• As ν gets very large, χ^2_ν approaches the normal distribution.

Why?
Properties of Family of χ^2 Distributions

- $E(\chi^2_\nu) = \text{mean} = \nu = \text{degrees of freedom}$.
- $E[(\chi^2_\nu - E(\chi^2_\nu))^2] = \text{var}(\chi^2_\nu) = 2\nu$.
- Mode of χ^2_ν is at value $\nu - 2$ (for $\nu \geq 2$).
- Median is approximately $\frac{(3\nu - 2)}{3}$ (for $\nu \geq 2$).
Properties of Family of χ^2 Distributions

IF

• A random variable $\chi^2_{\nu_1}$ has a chi-squared distribution with ν_1 degrees of freedom, and

• A second independent random variable $\chi^2_{\nu_2}$ has a chi-squared distribution with ν_2 degrees of freedom,

THEN

$$\chi^2_{(\nu_1 + \nu_2)} = \chi^2_{\nu_1} + \chi^2_{\nu_2}$$

their sum has a chi-squared distribution with $(\nu_1 + \nu_2)$ degrees of freedom.
Percentiles of χ^2 Distributions

Note: $0.95\chi_1^2 = 3.84 = 1.96^2 = z_{.95}^2$

- Tables
- http://calculator.stat.ucla.edu/cdf/
- pvalue.f program or the executable version, pvalue.exe, on the course web-site.
- SAS: PROBCHI(x,df<,nc>) where
 - x = number
 - df = degrees of freedom
 - If $p=PROBCHI(x, df)$, then
 $p = Prob(\chi_{df}^2 \leq x)$
SAS Examples & Computations

p-values:

DATA probval;
 pz=PROBNORM(1.96);
 pzsq=PROBCHI(3.84,1);
output;
RUN;

Output:

 pz pzsq
 0.97500 0.95000

What are these values?
SAS Examples & Computations

...To get density values...

Probability Density;

data chisq3;
 do x=0 to 10 by .005;
 pdfxsq=pdf('CHISQUARE',x,3);
 output;
 end;
run;
Inferences about a Population Variance

or the sampling distribution of the sample variance from a normal population.

• **Statistical Hypotheses:**

\[H_0 : \sigma^2 = \sigma_o^2 \quad \text{versus} \quad H_a : \sigma^2 \neq \sigma_o^2 \]

• **Assumptions:** Observations are independently drawn (random) from a normal population; i.e.,

\[Y_i \sim \mathcal{N}(\mu, \sigma^2) \quad \text{i.i.d} \]
Inferences about σ^2 (continued)

Test Statistic:

- We know
 \[
 \sum_{i=1}^{n} \frac{(Y_i - \mu)^2}{\sigma^2} = \sum_{i=1}^{n} z_i^2 \sim \chi_n^2
 \]
 if $z \sim \mathcal{N}(0, 1)$.

- We don’t know μ, so we use \bar{Y} as an estimate of μ
 \[
 \sum_{i=1}^{n} \frac{(Y_i - \bar{Y})^2}{\sigma^2} \sim \chi_{n-1}^2
 \]
 or
 \[
 \sum_{i=1}^{n} \frac{(Y_i - \bar{Y})^2}{\sigma^2} = \frac{(n - 1)s^2}{\sigma^2} \sim \chi_{n-1}^2
 \]
Test Statistic for $H_0 : \sigma^2 = \sigma_o^2$

- So
 \[s^2 \sim \frac{\sigma^2}{(n-1)} \chi_{n-1}^2 \]

- This gives us our test statistic:
 \[\chi^2 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{\sigma_o^2} \]

 where $H_0 : \sigma^2 = \sigma_o^2$.

- Sampling distribution of Test Statistic: If H_o is true, which means that $\sigma^2 = \sigma_o^2$, then
 \[\chi^2 = \frac{(n-1)s^2}{\sigma_o^2} = \sum_{i=1}^{n} \frac{(Y_i - \bar{Y})^2}{\sigma_o^2} \sim \chi_{n-1}^2 \]
Decision and Conclusion, \(H_0 : \sigma^2 = \sigma_0^2 \)

- **Decision**: Compare the obtained test statistic to the chi-squared distribution with \(\nu = n - 1 \) degrees of freedom.

 or find the \(p \)-value of the test statistic and compare to \(\alpha \).

- **Interpretation/Conclusion**: What does the decision mean in terms of what you’re investigating?
Example of $H_o : \sigma^2 = \sigma_o^2$

• High School and Beyond: Is the variance of math scores of students from private schools equal to 100?

• Statistical Hypotheses:

$H_o : \sigma^2 = 100$ versus $H_a : \sigma^2 \neq 100$

• Assumptions: Math scores are independent and normally distributed in the population of high school seniors who attend private schools and the observations are independent.
Example of $H_o: \sigma^2 = \sigma^2_o$ (continued)

- **Test Statistic:** $n = 94$, $s^2 = 67.16$, and set $\alpha = .10$.

 $$\chi^2 = \frac{(n - 1)s^2}{\sigma^2} = \frac{(94 - 1)(67.16)}{100} = 62.46$$

 with $\nu = (94 - 1) = 93$.

- **Sampling Distribution of the Test Statistic:** Chi-square with $\nu = 93$.

 Critical values: $$.05\chi^2_{93} = 71.76 \& .95\chi^2_{93} = 116.51.$$
Example of $H_0 : \sigma^2 = \sigma_o^2$ (continued)

- Critical values: $0.05 \chi^2_{93} = 71.76$ & $0.95 \chi^2_{93} = 116.51$.

- Decision: Since the obtained test statistic $\chi^2 = 71.76$ is less than $0.05 \chi^2_{93} = 116.51$, reject H_o at $\alpha = 0.10$.
Confidence Interval Estimate of σ^2

- Start with

$$\text{Prob} \left(\frac{(n-1)s^2}{\sigma^2} \leq \frac{(1-\alpha/2)\chi^2_{\nu}}{\alpha/2} \right) = 1 - \alpha$$

- After a little algebra...

$$\text{Prob} \left[\left(\frac{1}{(1-\alpha/2)\chi^2_{\nu}} \right) \leq \frac{\sigma^2}{(n-1)s^2} \leq \left(\frac{1}{(\alpha/2)\chi^2_{\nu}} \right) \right] = 1 - \alpha$$

- and a little more

$$\text{Prob} \left[\left(\frac{(n-1)s^2}{(1-\alpha/2)\chi^2_{\nu}} \right) \leq \sigma^2 \leq \left(\frac{(n-1)s^2}{(\alpha/2)\chi^2_{\nu}} \right) \right] = 1 - \alpha$$
90% Confidence Interval Estimate of σ^2

- $(1 - \alpha)\%$ Confidence interval,

$$\frac{(n - 1)s^2}{(1 - \alpha/2)\chi^2_{\nu}} \leq \sigma \leq \frac{(n - 1)s^2}{\alpha/2\chi^2_{93}}$$

- So,

$$\frac{(94 - 1)(67.16)}{116.51}, \quad \frac{(94 - 1)(67.16)}{71.76} \rightarrow (53.61, 87.04),$$

which does not include 100 (the null hypothesized value).

- $s^2 = 67.16$ isn’t in the center of the interval.
The \mathcal{F} Distribution

• Comparing two variances: Are they equal?
• Start with two independent populations, each normal and equal variances....

\begin{align*}
Y_1 & \sim \mathcal{N}(\mu_1, \sigma^2) \quad \text{i.i.d.} \\
Y_2 & \sim \mathcal{N}(\mu_2, \sigma^2) \quad \text{i.i.d.}
\end{align*}

• Draw two independent random samples from each population,

\begin{align*}
n_1 & \quad \text{from population} \quad 1 \\
n_2 & \quad \text{from population} \quad 2
\end{align*}
The \mathcal{F} Distribution (continued)

• Using data from each of the two samples, estimate σ^2.

$$s_1^2 \quad \text{and} \quad s_2^2$$

• Both S_1^2 and S_2^2 are random variables, and their ratio is a random variable,

$$F = \frac{\text{estimate of } \sigma^2}{\text{estimate of } \sigma^2} = \frac{s_1^2}{s_2^2} = \frac{\chi^2_{(n_1-1)}/(n_1 - 1)}{\chi^2_{(n_2-1)}/(n_2 - 1)} = \frac{\chi_{\nu_1}^2/\nu_1}{\chi_{\nu_2}^2/\nu_2}$$

• Random variable F has an \mathcal{F} distribution.
Testing for Equal Variances

- \mathcal{F} gives us a way to test $H_0 : \sigma_1^2 = \sigma_2^2 (= \sigma^2)$.

- Test statistic:

$$F = \left(\frac{s_1^2}{s_2^2} \right) = \frac{1}{n_1-1} \sum_{i=1}^{n_1} (Y_{i1} - \bar{Y}_1)^2 \left(\frac{1}{\sigma^2} \right)$$

$$= \frac{1}{n_2-1} \sum_{i=1}^{n_2} (Y_{i2} - \bar{Y}_2)^2 \left(\frac{1}{\sigma^2} \right)$$

$$= \frac{\chi^2_{\nu_1} / \nu_1}{\chi^2_{\nu_2} / \nu_2}$$

- A random variable formed from the ratio of two independent chi-squared variables, each divided by its degrees of freedom, is an “F–ratio” and has an \mathcal{F} distribution.
Conditions for an F Distribution

• **IF**
 • Both parent populations are normal.
 • Both parent populations have the same variance.
 • The samples (and populations) are independent.

• **THEN** the theoretical distribution of F is F_{ν_1, ν_2} where
 • $\nu_1 = n_1 - 1 = \text{numerator degrees of freedom}$
 • $\nu_2 = n_2 - 1 = \text{denominator degrees of freedom}$
Eg of \mathcal{F} Distributions: \mathcal{F}_{2, ν_2}

F Distributions: $\nu_1 = 3$, $\nu_2 =$

- 10.5
- 10.10
- 10.20
- 10.100

![Graph of F Distributions](image-url)
Eg of \mathcal{F} Distributions: \mathcal{F}_{5,ν_2}
Eg of \mathcal{F} Distributions: \mathcal{F}_{50,ν_2}
Important Properties of F Distributions

• The range of F–values is non-negative real numbers (i.e., 0 to $+\infty$).

• They depend on 2 parameters: numerator degrees of freedom (ν_1) and denominator degrees of freedom (ν_2).

• The expected value (i.e, the mean) of a random variable with an F distribution with $\nu_2 > 2$ is

$$E(F_{\nu_1, \nu_2}) = \mu_{F_{\nu_1, \nu_2}} = \frac{\nu_2}{(\nu_2 - 2)}.$$
Properties of \(F \) Distributions

- For any fixed \(\nu_1 \) and \(\nu_2 \), the \(F \) distribution is non-symmetric.
- The particular shape of the \(F \) distribution varies considerably with changes in \(\nu_1 \) and \(\nu_2 \).
- In most applications of the \(F \) distribution (at least in this class), \(\nu_1 < \nu_2 \), which means that \(F \) is positively skewed.
- When \(\nu_2 > 2 \), the \(F \) distribution is uni-modal.
Percentiles of the \mathcal{F} Dist.

- http://calculators.stat.ucla.edu/cdf
- p-value program
- SAS probf

- Tables textbooks given the upper 25^{th}, 10^{th}, 5^{th}, 2.5^{th}, and 1^{st} percentiles. Usually, the
 - Columns correspond to ν_1, numerator df.
 - Rows correspond to ν_2, denominator df.
- Getting lower percentiles using tables requires taking reciprocals.
Selected \mathcal{F} values from Table V

Note: all values are for upper $\alpha = .05$

<table>
<thead>
<tr>
<th>ν_1</th>
<th>ν_2</th>
<th>F_{ν_1,ν_2}</th>
<th>which is also...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>161.00</td>
<td>t_1^2</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>4.35</td>
<td>t_{20}^2</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
<td>3.85</td>
<td>t_{1000}^2</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
<td>3.84</td>
<td>$t_{\infty}^2 = z^2 = \chi_1^2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ν_1</th>
<th>ν_2</th>
<th>F_{ν_1,ν_2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>4.35</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>2.87</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>2.35</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>2.12</td>
</tr>
<tr>
<td>1000</td>
<td>20</td>
<td>1.57</td>
</tr>
</tbody>
</table>
Test Equality of Two Variances

Are students from private high schools more homogeneous with respect to their math test scores than students from public high schools?

• Statistical Hypotheses:
 \[H_0 : \sigma^2_{private} = \sigma^2_{public} \text{ or } \sigma^2_{public}/\sigma^2_{private} = 1 \]
 versus \[H_a : \sigma^2_{private} < \sigma^2_{public} , (1\text{-tailed test}) \].

• Assumptions: Math scores of students from private schools and public schools are normally distributed and are independent both between and within in school type.
Test Equality of Two Variances

• Test Statistic:
\[F = \frac{s_1^2}{s_2^2} = \frac{91.74}{67.16} = 1.366 \]

with \(\nu_1 = (n_1 - 1) = (506 - 1) = 505 \) and \(\nu_2 = (n_2 - 1) = (94 - 1) = 93 \).

Since the sample variance for public schools, \(s_1^2 = 91.74 \), is larger than the sample variance for private schools, \(s_2^2 = 67.16 \), put \(s_1^2 \) in the numerator.

• **Sampling Distribution** of Test Statistic is \(\mathcal{F} \) distribution with \(\nu_1 = 505 \) and \(\nu_2 = 93 \).
Test Equality of Two Variances

• Decision: Our observed test statistic, $F_{505,93} = 1.366$ has a p–value$= .032$. Since p–value $< \alpha = .05$, reject H_o.

• Or, we could compare the observed test statistic, $F_{505,93} = 1.366$, with the critical value of $F_{505,93}(\alpha = .05) = 1.320$. Since the observed value of the test statistic is larger than the critical value, reject H_o.

• Conclusion: The data support the conclusion that students from private schools are more homogeneous with respect to math test scores than students from public schools.
Example Continued

• Alternative question: “Are the individual differences of students in public high schools and private high schools the same with respect to their math test scores?”

• Statistical Hypotheses: The null is the same, but the alternative hypothesis would be

\[H_a : \sigma^2_{public} \neq \sigma^2_{private} \] (a 2–tailed alternative)

• Given \(\alpha = .05 \), Retain the \(H_o \), because our obtained \(p \)–value (the probability of getting a test statistic as large or larger than what we got) is larger than \(\alpha/2 = .025 \).
Example Continued

- Given $\alpha = .05$, Retain the H_0, because our obtained p–value (the probability of getting a test statistic as large or larger than what we got) is larger than $\alpha/2 = .025$.

- Or the rejection region (critical value) would be any F–statistic greater than $F_{505,93}(\alpha = .025) = 1.393$.

- Point: This is a case where the choice between a 1 and 2 tailed test leads to different decisions regarding the null hypothesis.
Test for Homogeneity of Variances

\[H_0 : \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_J^2 \]

- These include
 - Hartley’s \(F_{\text{max}} \) test
 - Bartlett’s test
 - One regarding variances of paired comparisons.

- You should know that they exist; we won’t go over them in this class. Such tests are not as important as they once (thought) they were.
Test for Homogeneity of Variances

• Old View: Testing the equality of variances should be a preliminary to doing independent \(t \)-tests (or ANOVA).

• Newer View:
 • Homogeneity of variance is required for small samples, which is when tests of homogeneous variances do not work well. With large samples, we don’t have to assume \(\sigma_1^2 = \sigma_2^2 \).
 • Test critically depends on population normality.
 • If \(n_1 = n_2 \), \(t \)-tests are robust.
Test for Homogeneity of Variances

- For small or moderate samples and there’s concern with possible heterogeneity → perform a Quasi-\(t\) test.
- In an experimental settings where you have control over the number of subjects and their assignment to groups/conditions/etc. → equal sample sizes.
- In non-experimental settings where you have similar numbers of participants per group, \(t\) test is pretty robust.
... and the central importance of the normal distribution.

- Normal, Student’s \(t_\nu \), \(\chi^2_\nu \), and \(F_{\nu_1, \nu_2} \) are all theoretical distributions.
- We don’t ever actually take vast (infinite) numbers of samples from populations.
- The distributions are derived based on mathematical logic statements of the form

\[
\text{IF} \quad \ldots \ldots \quad \text{Then} \quad \ldots \ldots
\]
Derivation of Distributions

• Example
 • IF we draw independent random samples of size (large) \(n \) from a population and compute the mean \(\bar{Y} \) and repeat this process many, many, many, many, many times,
 • THEN \(\bar{Y} \) is approximately normal.

• Assumptions are part of the “if” part, the conditions used to deduce sampling distribution of statistics.

• The \(t, \chi^2 \) and \(F \) distributions all depend on normal “parent” population.
Chi-Square Distribution

• \(\chi^2_\nu \) = sum of independent squared normal random variables with mean \(\mu = 0 \) and variance \(\sigma^2 = 1 \) (i.e., “standard normal” random variables).

\[
\chi^2_\nu = \sum_{i=1}^{n} z_i^2 \quad \text{where} \quad z_i \sim \mathcal{N}(0, 1)
\]

• Based on the Central Limit Theorem, the “limit” of the \(\chi^2_\nu \) distribution (i.e., \(n \to \infty \)) is normal.
The \mathcal{F} Distribution

- $\mathcal{F}_{\nu_1,\nu_2} =$ ratio of two independent chi-squared random variables each divided by their respective degrees of freedom.

\[
\mathcal{F}_{\nu_1,\nu_2} = \frac{\chi^2_{\nu_1}/\nu_1}{\chi^2_{\nu_2}/\nu_2}
\]

- Since χ^2_{ν}’s depend on the normal distribution, the \mathcal{F} distribution also depends on the normal distribution.

- The “limiting” distribution of $\mathcal{F}_{\nu_1,\nu_2}$ as $\nu_2 \to \infty$ is $\chi^2_{\nu_1}/\nu_1 \ldots \ldots$ because as $\nu_2 \to \infty$, $\chi^2_{\nu_2}/\nu_2 \to 1$.
Students t Distribution

Note that

$$ t_{\nu}^2 = \left(\frac{\bar{Y} - \mu}{s / \sqrt{n}} \right)^2 $$

$$ = \frac{(\bar{Y} - \mu)^2 n}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2 / (n - 1)} $$

$$ = \frac{(\bar{Y} - \mu)^2 n}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2 / (n - 1)} \left(\frac{1}{\sigma^2} \right) $$

$$ = \frac{(\bar{Y} - \mu)^2}{\sigma^2 / n} = \frac{z^2}{\chi^2 / \nu} $$
Students t Distribution (continued)

- Student’s t based on normal,

 $$t^2_\nu = \frac{z^2}{\chi^2_\nu / \nu} \quad \text{or} \quad t_\nu = \frac{z}{\sqrt{\chi^2_\nu / \nu}}$$

- A squared t random variable equals the ratio of squared standard normal divided by chi-squared divided by its degrees of freedom. So...
Students t Distribution (continued)

Since

$$t^2_{\nu} = \frac{z^2}{\chi^2_{\nu}/\nu} \quad \text{or} \quad t_{\nu} = \frac{z}{\sqrt{\chi^2_{\nu}/\nu}}$$

• As $\nu \to \infty$, $t_{\nu} \to \mathcal{N}(0, 1)$ because $\chi^2_{\nu}/\nu \to 1$.

• Since $z^2 = \chi^2_1$, $t^2 = \frac{z^2/1}{\chi^2_n/\nu} = \frac{\chi^2_1/1}{\chi^2_n/\nu} = \mathcal{F}_{1,\nu}$

• Why are the assumptions of normality, homogeneity of variance, and independence required for
 • t test for mean(s)
 • Testing homogeneity of variance(s).
Summary of Relationships

Let \(z \sim \mathcal{N}(0, 1) \)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Definition</th>
<th>Parent</th>
<th>Limiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi^2_{\nu})</td>
<td>(\sum_{i=1}^{\nu} z_i^2)</td>
<td>normal</td>
<td>As (\nu \to \infty), (\chi^2_{\nu} \to) normal</td>
</tr>
<tr>
<td>Independent (z)'s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F_{\nu_1, \nu_2})</td>
<td>((\chi_{\nu_1}^2/\nu_1)/(\chi_{\nu_2}^2/\nu_2))</td>
<td>chi-squared</td>
<td>As (\nu_2 \to \infty), (F_{\nu_1, \nu_2} \to \chi^2_{\nu_1}/\nu_1)</td>
</tr>
<tr>
<td>Independent (\chi^2)'s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td>(z/\sqrt{\chi^2/\nu})</td>
<td>normal</td>
<td>As (\nu \to \infty), (t \to) normal</td>
</tr>
</tbody>
</table>

Note: \(F_{1, \nu} = t^2_{\nu} \), also \(F_{1, \infty} = t^2_{\infty} = z^2 = \chi^2_1 \).